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Abstract—Recently, the problem of detecting the rumor source
in a social network has been much studied, where it has been
shown that the detection probability cannot be beyond 31%
even for regular trees. In this paper, we study the impact of
an anti-rumor on the rumor source detection. We first show
a negative result: the anti-rumor’s diffusion does not increase
the detection probability under Maximum-Likelihood-Estimator
(MLE) when the number of infected nodes are sufficiently large
by passive diffusion that the anti-rumor starts to be spread
by a special node, called the protector, after is reached by the
rumor. We next consider the case when the distance between
the rumor source and the protector follows a certain type of
distribution, but its parameter is hidden. Then, we propose the
following learning algorithm: a) learn the distance distribution
parameters under MLE, and b) detect the rumor source under
Maximum-A-Posterior-Estimator (MAPE) based on the learnt
parameters. We provide an analytic characterization of the rumor
source detection probability for regular trees under the proposed
algorithm, where MAPE outperforms MLE by up to 50% for
3-regular trees and by up to 63% when the degree of the regular
tree becomes large. We demonstrate our theoretical findings
through numerical results, and further present the simulation
results for general topologies (e.g., Facebook and US power grid
networks) even without knowledge of the distance distribution,
showing that under a simple protector placement algorithm,
MAPE produces the detection probability much larger than that
by MLE.

I. INTRODUCTION

Information spread is universal in many types of on-
line/offline and social/physical networks. Examples include
the propagation of infectious diseases, the technology diffu-
sion, the computer virus/spam infection in the Internet, and
tweeting and retweeting of popular topics. Finding the source
in those information spreads is one of the indispensable and
useful tasks, arising in many different contexts, e.g., detecting
a malicious agent, a patient zero, or an influential person,
because pre-action can be taken by some authorities to limit
the possible damages due to spreading of such diffused objects
that are harmful, if spread in an uncontrolled manner. Since
the seminal work by Shah and Zaman [1], extensive research
efforts have been made [2]–[4], where the main focus has
been on how to design an estimator and provide theoretical
(positive and negative) limits on the detection performance.
However, for example, it is shown [1] that in the regular

This work was supported by Institute for Information & communica-
tions Technology Promotion (IITP) grant funded by the Korea government
(MSIP) (No.B0717-16-0034,Versatile Network System Architecture for Multi-
dimensional Diversity).

tree topologies, the detection probability cannot be above
31% under Maximum-Likelihood-Estimator (MLE), and even
worse, in other realistic topologies such as power grid graphs,
scale-free graphs and Internet autonomous system (AS) graphs,
the detection probability is less than 5% under a MLE-based
heuristic.

In this paper, our interest lies in how much detection
performance can be improved by installing hidden agents,
called protectors that spread “anti-rumor.” The role of these
protectors is to spread the information against the rumor,
vaccinate humans against infectious disease, or install security
updates against computer virus. Intuitively, the existence of
protectors and their infection with anti-rumor seem beneficial
in detecting the rumor source, because they both block the
rumor spread and the snapshot of both protected and infected
nodes, compared to that of only infected nodes, discloses
more information to the detector. However, understanding
which nodes should be estimated to be the rumor source and
quantifying the detection performance in presence of protectors
is far from trivial. In this paper, we assume that initially there
exists a single rumor source and an anti-rumor source (also
called protector source throughout this paper), where the the
anti-rumor source responds passively in the sense that it is
initially dormant and becomes active and starts to infect other
nodes (with anti-rumor) only when the rumor reaches itself.
Our main contributions are summarized in what follows:

1) First, we show that under MLE, the protector’s anti-rumor
spread does not improve the detection probability in regular
trees under the passive diffusion. However, we show that
this is not the case if some statistical feature on the
distance between the rumor and protector sources is given.
In particular, we assume that the distance distribution is
of a specific type, where their parameters are unknown. In
practice, the parameters can be learnt using certain prior
records on the rumor source or the diffusion snapshot. If
such prior records do not exist, one can use a learning
algorithm such as MLE to estimate the parameters (see
Section III for more details). We study three example
distance distributions, Zipf, Geometric or Poisson, where
the probability that the protector source is located decays
with distance in all distributions, but their decaying patterns
differ.

2) Second, for a given quality in estimating the distribution
parameters, we quantify how much the detection probability
increases in regular trees under Maximum-A-Posterior-
Estimator (MAPE) due to the usage of the protector’s anti-
rumor spreads. In particular, we show that the difference of
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the detection probabilities between MLE and MAPE is up
to 50% for the 3-regular tree and up to 63% for the regular
tree with infinite degree. This implies that if the protector
source is appropriately placed around the rumor source, the
detection probability significantly increases.

3) Finally, we design a MAPE-based heuristic for general
topologies such as Erdös-Rényi (ER) graph, small world
graph, scale-free graph, as well as a Facebook ego network
and a US power grid network, where we observe that the
prior information based on the protector source significantly
helps to detect the rumor source.

Thus, we conclude that utilizing the anti-rumor is a simple
way of detecting the rumor source better, where in literature
several different approaches have been considered for a similar
purpose, e.g., multiple observations [2], suspect set [3] and
Jordan center-based [4] methods. We believe that ours shed
new lights on this area, being of broad interest in the future.

II. MODEL AND PRELIMINARIES

A. Information Spreading Model

We consider an undirected graph 𝐺 = (𝑉,𝐸), where 𝑉 is
a countably infinite set of nodes and 𝐸 is the set of edges of
the form (𝑖, 𝑗) for 𝑖, 𝑗 ∈ 𝑉 . Each node represents an individual
in human social networks or a computer host in the Internet,
and each edge corresponds to a social relationship between
two individuals or a physical connection between two Internet
hosts. As in other works, e.g., [1], we assume a countably
infinite set of nodes for avoiding the boundary effects.

There exist two spreading sources: a rumor source and a
protector source, which we denote by 𝑣∗, 𝑝∗ ∈ 𝑉, respectively.
The rumor source is the staring node which spreads a rumor,
and the protector source corresponds to a node which spreads
an “anti-rumor”, e.g., an anti-virus for virus spreading and a
true fact for feigned rumor spreading. We consider the case
when the protector source is passive in the sense that it is
initially dormant, but becomes active and starts to infect its
neighboring node only when the rumor reaches it (see Fig. 1).
As a model of spreading rumor and anti-rumor, we consider
a variant of SI (Susceptible-Infected) model that each node
is one of the following three states: susceptible, infected, or
protected, where all nodes are initialized to be susceptible
except the initially-infected rumor source 𝑣∗ and the initially-
protected protector source 𝑝∗. Once a node 𝑖 has rumor or
anti-rumor, it is able to spread it to another susceptible node 𝑗
if and only if there is an edge between them, i.e., (𝑖, 𝑗) ∈ 𝐸.
We assume that once a node becomes either infected or
protected, it does not change its state, as in the classical
SI model. For each edge (𝑖, 𝑗) ∈ 𝐸, let a random variable
𝜏𝑖𝑗 be the time it takes for susceptible node 𝑗 to receive
the information (irrespective of being rumor or anti-rumor)
from non-susceptible node 𝑖. We assume 𝜏𝑖𝑗 is exponentially
distributed with rate 𝜆 > 0 independently with everything else.
Without loss of generality, we assume that 𝜆 = 1.

B. Source Estimators: MLE and MAPE

MLE and MAPE. Let 𝐼𝑁 and 𝑃𝑀 be the sets of infected
and protected nodes, respectively, when one intends to detect
the rumor source. Here, the subscripts 𝑁 and 𝑀 are used
to express the number of infected and protected nodes. To

Fig. 1. Illustrative example of information spreading model for 3-regular tree.
Here, 𝑣∗ is a rumor source and 𝑝∗ is a protector source (anti-rumor source),
respectively.

estimate the rumor source 𝑣∗, we consider the following two
popular estimators, MLE and MAPE:

𝑣ml = arg max
𝑣∈𝐼𝑁

ℙ(𝐼𝑁 , 𝑃𝑀 ∣𝑣, 𝑝∗),
𝑣map = arg max

𝑣∈𝐼𝑁
ℙ(𝑣∣𝐼𝑁 , 𝑃𝑀 , 𝑝∗),

(1)

where we assume that these have the knowledge of the
protector 𝑝∗. Note that the relation between MLE and MAPE
can be explained by:

𝑣map = arg max
𝑣∈𝐼𝑁

ℙ(𝑣∣𝐼𝑁 , 𝑃𝑀 , 𝑝∗)

(𝑎)
= arg max

𝑣∈𝐼𝑁

ℙ(𝐼𝑁 , 𝑃𝑀 ∣𝑣, 𝑝∗)ℙ(𝑣, 𝑝∗)
ℙ(𝐼𝑁 , 𝑃𝑁 , 𝑝∗)

= arg max
𝑣∈𝐼𝑁

ℙ(𝐼𝑁 , 𝑃𝑀 ∣𝑣, 𝑝∗) ⋅ ℙ(𝑣, 𝑝∗),

where (𝑎) is from the Bayes’ rule and ℙ(𝐼𝑁 , 𝑃𝑀 ∣𝑣, 𝑝∗) is the
probability that the realizations 𝐼𝑁 and 𝑃𝑀 occur, given a
rumor source 𝑣 and the protector source 𝑝∗. Therefore, MLE
is equivalent to MAPE if ℙ(𝑣, 𝑝∗) is uniform over 𝑣 ∈ 𝑉.

To further characterize two estimators, let 𝜎 = (𝜔1 =
𝑣∗, 𝜔2, ..., 𝜔𝑀+𝑁 ) be an infection sequence resulting in
𝐼𝑁 , 𝑃𝑀 , where the rumor source 𝑣∗ generates the rumor first,
and all other nodes in the sequence 𝜔2, ..., 𝜔𝑀+𝑁 are arranged
in ascending order of their propagation times. Then, we have

ℙ(𝐼𝑁 , 𝑃𝑀 ∣𝑣, 𝑝∗) =
∑

𝜎∈Ω(𝑣,𝑝∗,𝐼𝑁 ,𝑃𝑀 )

ℙ(𝜎∣𝑣, 𝑝∗), (2)

where Ω(𝑣, 𝑝∗, 𝐼𝑁 , 𝑃𝑀 ) be the set of all possible propagation
sequences given 𝐼𝑁 , 𝑃𝑀 . Then, under a regular tree 𝐺, one
can follow the same approach as that in [1] and characterize
MLE and MAPE based on the number of possible propagation
sequences, i.e.,

𝑣ml = arg max
𝑣∈𝐼𝑁

𝑅(𝑣, 𝑝∗, 𝐼𝑁 , 𝑃𝑀 ), (3)

𝑣map = arg max
𝑣∈𝐼𝑁

𝑅(𝑣, 𝑝∗, 𝐼𝑁 , 𝑃𝑀 ) ⋅ ℙ(𝑣, 𝑝∗), (4)

where

𝑅(𝑣, 𝑝∗, 𝐼𝑁 , 𝑃𝑀 ) = ∣Ω(𝑣, 𝑝∗, 𝐼𝑁 , 𝑃𝑀 )∣
= (𝑀 +𝑁)!

∏
𝑢∈𝐼𝑁∪𝑃𝑀

∣𝑇 𝑣
𝑢 ∣−1. (5)

In the above, we let ∣𝑇 𝑣
𝑢 ∣ be the number of nodes in the subtree

𝑇 𝑣
𝑢 rooted at node 𝑢 when 𝑣 is the rumor source. One can
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compute 𝑅(⋅) for every infected node 𝑣 ∈ 𝐼𝑁 in 𝑂(𝑀 +𝑁)
time using a similar message passing algorithm to that in [1].

Distance distribution. For computing MAPE in (4), one has
to know the probability ℙ(𝑣, 𝑝∗). To this end, we assume
that the distance between 𝑣 and 𝑝∗ is a random variable
following a specific distribution. In this paper, we consider
three distributions: ‘𝐿-truncated’ Zipf, Geometric or Poisson,
where 𝐿 is a non-negative integer constant, i.e., for 1 ≤ 𝑙 ≤ 𝐿,

ℙ (𝑑(𝑣, 𝑝∗) = 𝑙) ∝
⎧⎨⎩
1/𝑙𝜃 for Zipf (𝜃 ≥ 0),

𝜃(1− 𝜃)𝑙−1 for Geometric (0 < 𝜃 ≤ 1)

𝜃𝑙𝑒−𝜃/𝑙! for Poisson (𝜃 ≥ 0),

,

(6)

and ℙ(𝑑(𝑣, 𝑝∗) = 𝑙) = 0 for 𝑙 > 𝐿. The main reason why we
study these three distributions is because higher probabilities
are assigned to nearer rumor sources from the protector source
under them and these distributions will give how the distance
information effect to detect the rumor source. We consider
the sufficiently large 𝐿 but finite. Nevertheless, our analytical
results can be easily extended to other distributions. We also
remark that it is reported the distance of two nodes follows
Zipf distribution in some social networks [5], [6]. Throughout
this paper, we commonly use 𝜃 to mean the parameter of any
of three distance distributions, where the true parameter 𝜃 = 𝜃∗
might be unknown a priori and one has to run MAPE with an
estimated parameter 𝜃 = 𝜃.

Detection probability. We let C𝑀+𝑁 be the event of detecting
the (rumor) source using a given estimator, where we are inter-
ested in the asymptotic case, i.e., lim𝑀+𝑁→∞ ℙ(C𝑀+𝑁 ).1 We
denote by 𝜋ml𝑑 and 𝜋map𝑑 the detection probabilities of MLE and
MAPE for 𝑑-regular tree, respectively. In addition, we use just
𝜋𝑑 to refer to that of MLE without protectors (i.e., 𝑀 = 0) for
a comparative purpose, where the following formula is known
for 𝜋𝑑.

Lemma 1 ( [7]): Under 𝑑-regular tree 𝐺,

𝜋𝑑 =

{
0 if 𝑑 = 2

1− 𝑑
(
1− I1/2

(
1

𝑑−2 ,
𝑑−1
𝑑−2

))
if 𝑑 ≥ 3.

where I𝑥(𝛼, 𝛽) is the incomplete Beta function2 with parame-
ters 𝛼 and 𝛽.

Using the above lemma, one can easily check that the
detection probability for MLE without protectors is at most
0.307.

III. DETECTION PROBABILITY WITH PROTECTORS

A. MLE-based Detection

We first provide the performance of MLE for detecting the
rumor source in presence of anti-rumors under regular trees.

Theorem 1: Under 𝑑-regular tree 𝐺,

𝜋ml𝑑 = 𝜋𝑑 for all 𝑑 ≥ 2.

1Note that since the distance between the rumor and the protector sources
are bounded by 𝐿 < ∞, 𝑀 +𝑁 → ∞ implies that 𝑀 → ∞ and 𝑁 → ∞.

2The incomplete Beta function I𝑥(𝛼, 𝛽) is the probability that a Beta
random variable with parameters 𝛼 and 𝛽 is less than 𝑥 ∈ [0, 1], whose form
is I𝑥(𝛼, 𝛽) =

Γ(𝛼+𝛽)
Γ(𝛼)Γ(𝛽)

∫ 𝑥
0 𝑡𝛼−1(1 − 𝑡)𝛽−1𝑑𝑡 where Γ(⋅) is the standard

Gamma function [7].

We present the proof in our technical report [8]. This result
implies that the existence of anti-rumors does not improve
the detection performance when there are sufficiently large
infected and protected nodes. This seems somewhat counter-
intuitive, because the diffusion of anti-rumors may provide a
side information so as to enable better detection. This negative
result can be explained for the following reasons. Depending
on the distance between the protector source and the rumor
source, two cases can be considered. First, when 𝐼𝑁 is much
larger than 𝑃𝑀 , the MLE is highly likely to be equal to
the original rumor center (without anti-rumors), resulting in
the same detection probability. Second, however, when 𝑃𝑀 is
larger than 𝐼𝑁 , the MLE is highly likely to be located in 𝑃𝑀 ,
which leads MLE to estimate a border node between 𝐼𝑁 and
𝑃𝑀 (because a rumor source should be in 𝐼𝑁 ), but the number
of such border nodes is negligible (in fact, there exists a single
border node in tree topologies), when 𝑁,𝑀 → ∞.

B. MAPE with Parameter Learning

In this subsection, we provide the performance of MAPE
in presence of anti-rumors under regular trees. It turns out
that obtaining the exact formula of MAPE’s detection proba-
bility, as in Lemma 1 in absence of protectors, is technically
challenging. However, in this section, we will provide a lower
bound of the detection probability with protectors, as stated in
Theorem 2, even when the unknown parameter of the distance
distribution is not exactly equal to the true parameter.

Theorem 2: Let 𝜋
map
𝑑 (𝜃) be the detection probability of

MAPE for the learnt parameter 𝜃 and the true parameter 𝜃∗.
Then for 𝑑-regular trees it follows that

𝜋
map
𝑑 (𝜃)− 𝜋𝑑 ≥ (𝑝(𝜃∗)− 1/2)

2𝑑−3
3(𝑑−2) (7)

− 6∣1− 𝑝(𝜃)/𝑝(𝜃∗)∣∣𝜃∗ − 𝜃∣, (8)

where

𝑝(𝜃) =

⎧⎨⎩
2𝜃

2𝜃+1
for Zipf(𝜃), 𝜃 ≥ 0,

1
2−𝜃 for Geometric(𝜃), 0 < 𝜃 ≤ 1,
2+𝜃
2+2𝜃 for Poisson(𝜃), 𝜃 ≥ 0.

(9)

Due to space limitation, we provide the proof sketch in
Section III-D (see our technical report in [8] for the full proof).
A few interpretations of Theorem 2 are in order.

(a) Theorem 2 states that depending on how well we learn
the true parameter 𝜃∗, the detection probability 𝜋map𝑑 is
determined. In other words, if 𝜃 is far from 𝜃∗, 𝜋map𝑑 may
be lower than 𝜋𝑑.

(b) In fact, we see that the protectors help in detecting the
rumor source, i.e., 𝜋map𝑑 (𝜃)− 𝜋𝑑 ≥ 0, when the following
condition holds:

∣𝜃∗ − 𝜃∣ ≤ (𝑝(𝜃∗)− 1/2)
2𝑑−3

3(𝑑−2)

6∣1− 𝑝(𝜃)/𝑝(𝜃∗)∣ . (10)

For an example, consider a Zipf distribution with 𝜃∗ = 1
for 3-regular tree (i.e., 𝑑 = 3). Then, (10) holds if
∣𝜃∗ − 𝜃∣ ≤ 0.8, and the condition for other cases are
similarly mild, where as we will present in Section III-C, 𝜃
can be learnt with a high-accuracy and low-cost parameter
learning algorithm.
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Fig. 2. Theoretical result of Theorem 2 for Zipf distribution (a) and learning
the parameter (b) of this distribution by MLE in Algorithm 1 for 𝑑 = 3 and
𝐿 = 50, respectively. (In (a), 𝜋𝑑 = 0.25 for 𝑑 = 3.)

(c) To roughly quantify our analytical result, if the distribution
parameter estimation is almost perfect, i.e., 𝜃∗ ≈ 𝜃, then
𝜋map𝑑 (𝜃) − 𝜋𝑑 ≳ (𝑝(𝜃∗)− 1/2)

2𝑑−3
3(𝑑−2) . The value of 𝑝(𝜃∗)

ranges in all three distributions as: 1/2 ≤ 𝑝(𝜃∗) ≤ 1.
Thus, the detection performance gap from MLE without
protectors is up to 50% for 𝑑 = 3 and up to 63% for
𝑑 → ∞. This gap will reduce slightly, depending on the
quality of true parameter 𝜃∗.

We plot the numerical result of Theorem 2 for Zipf
distribution in Fig 2(a) (see [8] for other distributions). We
consider three true parameters 𝜃∗ = 0, 1, 2 and change the
learning parameter from 𝜃 = 0 to 𝜃 = 5. We see that if
𝜃∗ = 0 (Uniform distribution) then there is no gain of detection
probability for any learnt parameter 𝜃 due to lack of any
distance information of the two sources. However, if 𝜃∗ > 0
then there exists non-negligible enhancement of the detection
probability.

C. Learning 𝜃∗

In practice, there is no knowledge of the true parameter 𝜃∗
a priori. In this case, one can estimate it using prior records
of rumor sources, or apply the following MLE simply based
on the current ‘snapshot’:

𝜃ml = argmax
𝜃

ℙ(𝐼𝑁 , 𝑃𝑀 , 𝑝∗∣𝜃)

= argmax
𝜃

𝐿∑
𝑙=1

ℙ(𝐼𝑁 , 𝑃𝑀 , 𝑝∗∣𝑑(𝑣, 𝑝∗) = 𝑙)ℙ(𝑑(𝑣, 𝑝∗) = 𝑙∣𝜃)

(𝑎)
= argmax

𝜃

𝐿∑
𝑙=1

⎛⎝ ∣𝑉𝑙∣∑
𝑘=1

ℙ(𝐼𝑁 , 𝑃𝑀 , 𝑝∗∣𝑣𝑙,𝑘)
⎞⎠ℙ(𝑑(𝑣, 𝑝∗) = 𝑙∣𝜃)

(𝑏)
= argmax

𝜃

𝐿∑
𝑙=1

𝑅(𝑉𝑙)ℙ(𝑑(𝑣, 𝑝
∗) = 𝑙∣𝜃), (11)

where 𝑣𝑙,𝑘 is the 𝑘-th infected nodes at distance 𝑙 to the
protector source 𝑝∗ and 𝑉𝑙 is the set of these nodes for
0 ≤ 𝑘 ≤ ∣𝑉𝑙∣. The equality (𝑎) is from the fact that 𝑑(𝑣, 𝑝∗) = 𝑙
which implies that 𝑣 ∈ 𝑉𝑙 and (𝑏) is from the fact that for
each 𝑣𝑙,𝑘 ∈ 𝑉𝑙, ℙ(𝐼𝑁 , 𝑃𝑀 , 𝑝∗∣𝑣𝑙,𝑘) ∝ 𝑅(𝑣𝑙,𝑘, 𝑝

∗, 𝐼𝑁 , 𝑃𝑀 ) as
in (3) where 𝑅(𝑉𝑙) =

∑∣𝑉𝑙∣
𝑘=1𝑅(𝑣𝑙,𝑘, 𝑝

∗, 𝐼𝑁 , 𝑃𝑀 ). Since 𝑅(𝑉𝑙)
can be obtained from the snapshot and ℙ(𝑑(𝑣, 𝑝∗) = 𝑙∣𝜃) is
determined when the distribution is given, MLE is obtained
by solving the optimization problem (11). To do this, let
𝑓(𝜃) :=

∑𝐿
𝑙=1𝑅(𝑉𝑙)ℙ(𝑑(𝑣, 𝑝

∗) = 𝑙∣𝜃) then we see that

Algorithm 1 Maximum Likelihood Estimation (MLE) of 𝜃∗
for Regular Trees

Input: (𝐼𝑁 , 𝑃𝑀 , 𝑑, 𝐿, 𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥, 𝜀,ℙ(𝑣, 𝑝
∗))

for 𝑣 ∈ 𝐼𝑁 do
Compute 𝑅(𝑣, 𝑝∗, 𝐼𝑁 , 𝑃𝑀 ) by a message passing algo-

rithm [1] and obtain 𝑑(𝑣, 𝑝∗) by a shortest path algorithm;
𝑅(𝑉𝑙) ← 0; (1 ≤ 𝑙 ≤ 𝐿)
if 𝑑(𝑣, 𝑝∗) = 𝑙 then

𝑅(𝑉𝑙) ← 𝑅(𝑉𝑙) +𝑅(𝑣, 𝑝∗, 𝐼𝑁 , 𝑃𝑀 );

end if
end for
Set 𝑓(𝜃) =

∑𝐿
𝑙=1𝑅(𝑉𝑙)ℙ(𝑑(𝑣, 𝑝

∗) = 𝑙∣𝜃);
𝜃𝑛𝑒𝑤 ← 𝜃𝑚𝑖𝑛+𝜃𝑚𝑎𝑥

2 ; (initialize)
while ∣∇𝑓(𝜃𝑛𝑒𝑤)∣ ≥ 𝜀 do

Use Brent method [9] to find the root of ∇𝑓(𝜃𝑛𝑒𝑤);
end while
return 𝜃ml = 𝜃𝑛𝑒𝑤

this function does not guarantee the concavity in terms of 𝜃
(thus not a convex program), but from the monotonicity and
differentiability of ℙ(𝑑(𝑣, 𝑝∗) = 𝑙∣𝜃), it is easy to check that the
function 𝑓(𝜃) is a differentiable unimodular function3. Thus,
we can apply a popular algorithm for maximizing a unimodular
function [9] to solve (11) as in Algorithm 1 where 𝜀 > 0 is the
termination constraint. One can easily check that the algorithm
is terminated in polynomial time of 𝑀 +𝑁 and 1/𝜀.

Fig. 2(b) shows numerical results on the performance of
learning 𝜃∗ for various values of 𝜃∗ in three distributions. For
the graphs, we consider the total number of diffused nodes
𝑀+𝑁 = 500 under the 3-regular tree (𝑑 = 3) and we generate
100 random diffusion snapshots. We plot the average value of
the estimated parameters with 95% confidence interval. Our
numerical results reveal that MLE-based parameter estimation
is highly accurate.

D. Proof Sketch of Theorem 2

In this subsection, we will provide the proof sketch of
Theorem 2 whose complete version is in [8]. To see this, we
first consider the detection probability 𝜋map𝑑 (𝜃) of MAPE for
𝑑-regular tree as

𝜋map𝑑 (𝜃) =
∑
𝑣∈𝒱𝐿

ℙ(𝑣map = 𝑣)ℙ(𝑣 = 𝑣∗)

=

𝐿∑
𝑙=1

(∑
𝑣∈𝑉𝑙

ℙ(𝑣map = 𝑣)

)
ℙ(𝑑(𝑣, 𝑝∗) = 𝑙∣𝜃∗)

=

𝐿∑
𝑙=1

𝜑
map
𝑙 (𝜃, 𝑑)ℙ(𝑑(𝑣, 𝑝∗) = 𝑙∣𝜃∗),

where 𝒱𝐿 := ∪𝐿
𝑙=1𝑉𝑙 and 𝜑map

𝑙 (𝜃, 𝑑) :=
∑

𝑣∈𝑉𝑙
ℙ(𝑣map = 𝑣) is

the detection probability of the MAPE when the distance of
two sources is 𝑙 ≥ 1. We first present a lemma that states the
lower bound of 𝜑map

𝑙 (𝜃, 𝑑) for any distribution with the learning
parameter 𝜃 and degree 𝑑 for a given distance distribution.

3𝑓(𝜃) is differentiable unimodular ∂𝑓(𝜃)/∂𝜃 > 0 for one side of some 𝜃
and ∂𝑓(𝜃)/∂𝜃 < 0 for the other side.
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Lemma 2: For the rumor source 𝑣 ∈ 𝐼𝑁 with 𝑑(𝑣, 𝑝∗) =
𝑙 (1 ≤ 𝑙 ≤ 𝐿), let ℙ𝑙 := ℙ(𝑑(𝑣, 𝑝∗) = 𝑙∣𝜃) then we have

𝜑
map
𝑙 (𝜃, 𝑑) ≥ 1− (𝑑− 1)

(
1− I𝑝𝑙

(
1

𝑑− 2
,
𝑑− 1

𝑑− 2

))
−

(
1− I𝑞𝑙

(
1

𝑑− 2
,
𝑑− 1

𝑑− 2

))
,

(12)

where 𝑝𝑙 =
ℙ𝑙

ℙ𝑙+1+ℙ𝑙
and 𝑞𝑙 =

ℙ𝑙

ℙ𝑙−1+ℙ𝑙
for any distribution.

This result is similar to that of Lemma 1. We present the
detailed proof of the lemma in [8]. Using Lemma 2, we obtain
the following result.

Lemma 3: For 𝑑-regular tree (𝑑 ≥ 2),

𝜋map𝑑 (𝜃∗)− 𝜋𝑑 ≥ (𝑝(𝜃∗)− 1/2)
2𝑑−3

3(𝑑−2) , (13)

where 𝑝(⋅) is defined in (9) for each distribution, respectively.

To obtain this result, we subtract the incomplete beta
function in Lemma 1 from that in Lemma 2 however, it is
not easy due to quite complex form of the function. To handle
this, we provide a new technique to find a tight lower bound of
these difference as a simple polynomial form (See the details
in [8]). Next, we consider the following result for the upper
bound of the detection probability difference between the true
and the learnt parameters.

Lemma 4: For 𝑑-regular trees (𝑑 ≥ 2),

𝜋map𝑑 (𝜃∗)− 𝜋map𝑑 (𝜃) ≤ 6∣1− 𝑝(𝜃)/𝑝(𝜃∗)∣∣𝜃∗ − 𝜃∣. (14)

This result is also obtained by using a similar technique
to that in Lemma 3 and in addition to this, we use some
contraction mapping properties to derive the difference of
detection probability as a function of ∣𝜃∗ − 𝜃∣. We also give
the full proof in [8]. Then, by combining (13), (14), we obtain
the Theorem 2 and this completes the proof.

IV. GENERAL GRAPHS AND SIMULATION RESULTS

We have so far assumed that the underlying graph is a
regular tree, which is simply for analytical tractability as done
in other related works [1]–[3], [7]. In this section, inspired
by our analytical findings in earlier sections, we study the
detection performance of a MAPE-based heuristic algorithm
in more practical and general graphs.

MAP-BFS estimator with 𝜃∗ learning. We first describe a
heuristic estimator motivated by MAPE, which is necessary
due to the computational intractability 4 of the problem MAPE
in (1). Motivated by the heuristic in [1], we propose a heuristic
algorithm based on Breadth-First Search (BFS), as described
in what follows: Let 𝜎𝑣 be the infection sequence of the BFS
ordering of the nodes in the given graph, then we estimate the
source 𝑣bmap that solves the following:

𝑣bmap = arg max
𝑣∈𝐺𝑁

ℙ(𝜎𝑣∣𝑣, 𝑝∗)
[
𝑅(𝑣, 𝑝∗, 𝑇𝑏(𝑣))× ℙ(𝑑(𝑣, 𝑝∗))

]
,

where 𝑇𝑏(𝑣) is a BFS tree rooted at 𝑣 and the rumor spreads
along it and 𝑑(𝑣, 𝑝∗) is the shortest distance between 𝑣 and

4We can easily prove that this is ♯P-complete similarly to the proof of MLE
without protectors in [1].

Algorithm 2 Distance Centrality-Based Algorithm (DSBA)

Input: (𝐺,𝑛, 𝐿)
Select a subgraph 𝐺𝐿 ⊆ 𝐺 with diameter 𝐿 randomly and
generate a rumor source 𝑣∗𝑖 ∈ 𝐺𝐿 uniformly at random up
to 1 ≤ 𝑖 ≤ 𝑛;
for 𝑣 ∈ 𝐺𝐿 do

Compute the distance 𝑑(𝑣, 𝑣∗𝑖 ) by a shortest path algo-
rithm for all 𝑖 and calculate the distance centrality of 𝑣 by
𝐶(𝑣) = 1/

∑𝑛
𝑖=1 𝑑(𝑣, 𝑣

∗
𝑖 );

end for
𝑃 ← 𝜙;
𝑣 = argmax𝑣∈𝐺𝐿

𝐶(𝑣);
𝑃 ← 𝑃 ∪ {𝑣};
if ∣𝑃 ∣ > 1 then

Choose 𝑣 ∈ 𝑃 uniformly at random;
end if
𝑝∗ ← 𝑣;
return 𝑝∗

Algorithm 3 Degree Centrality-Based Algorithm (DGBA)

Input: (𝐺,𝐿)
Select a subgraph 𝐺𝐿 ⊆ 𝐺 with diameter 𝐿 randomly ;
Set 𝐷(𝑣) by the degree of node 𝑣 in 𝐺𝐿;
𝑃 ← 𝜙;
𝑣 = argmax𝑣∈𝐺𝐿

𝐷(𝑣);
𝑃 ← 𝑃 ∪ {𝑣};
if ∣𝑃 ∣ > 1 then

Choose 𝑣 ∈ 𝑃 uniformly at random;
end if
𝑝∗ ← 𝑣;
return 𝑝∗

𝑝∗. Note that ℙ(𝑑(𝑣, 𝑝∗)) uses an MLE-estimated parameter as
in Section III-C based on 𝑇𝑏(𝑣), where computing the rumor
centrality 𝑅(⋅) (in (11)) with 𝑇𝑏(𝑣) is the key component. This
𝑇𝑏(𝑣)-based parameter learning is also a heuristic since obtain-
ing the exact 𝜃ml for a general graph is hard to solve. Except
for the complexity in learning the distribution parameter, we
can estimate a rumor source in 𝑂(𝑁(𝑀 +𝑁)) time.

Graphs. We consider (i) three synthetic random graphs: Erdös-
Rényi (ER) random graphs, small-world (SW), scale-free (SF)
graphs, and Torus grid (TG) and (ii) two real-world graphs;
a Facebook (FB) ego network and a US power (US) grid
network. First, in synthetic random graphs, we set the average
degree as 4 when there are 2000 nodes in the networks. For the
Torus grid network, we consider a 60×60 grid torus network
(thus 3600 nodes). Second, the Facebook ego network [10] is
a undirected graph consisting of 4039 nodes and 88234 edges
where each edge corresponds to a social relationship (called
FriendList) and the diameter is 8 hops. The US power grid
network [11] consists of 4941 nodes and 6594 edges and the
diameter is 46 hops.

Protector Source Selection Algorithms. In practice, the
distance distribution may not be known as a priori so that
we need to estimate or to assume some proper distributions
to obtain the detection behaviors by MAP-BFS estimator. In
this simulation, we consider the following two scenarios: (i)
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(a) ER random graph (K).
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(b) ER random graph (U).
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(c) Torus network (K).
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(d) Torus network (U).
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(e) US power grid network (K).
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(f) US power grid network (U).

Fig. 3. Simulation results of MAP-BFS detection performances where the
Cumulative Distribution Function (CDF) of the distance between true source
and estimator (Error) with 100 iterations under the general topologies when
𝑀 +𝑁 = 600. (K: known, U:Unknown)

Known distribution (K) and (ii) Unknown distribution (U),
respectively. For the first case, since the distribution is given
as a priori, we only need to estimate the hidden true parameter
of the distribution by some heuristic learning algorithm as we
mentioned earlier. However, in the second case, due to the
lack of the knowledge of distribution, we use some statistical
information about the history of location for previous rumor
sources. Based on this, we provide two protector source
selection algorithms as follows. First, we consider an algorithm
based on distance centrality (DSBA) of locations for them if
the diameter of the network is huge. Second, we consider
an algorithm based on the degree centrality (DGBA) of the
networks, otherwise. In both algorithms, we use the notion
𝐺𝐿 to denote a subgraph of 𝐺 which the diameter is 𝐿 > 0.

Setup. We use the true parameters: 𝜃∗ = 1 for Zipf, 𝜃∗ = 0.2
for Geometric and 𝜃∗ = 2 for Poisson distributions and
compare the results to the case without protectors in the
network and no priori information about the source (i.e.,
MLE). We use MATLAB for the simulations and generate 200
random graph samples for synthetic random graphs and a torus
graph, where we diffuse rumors and anit-rumors until we have
𝑀 + 𝑁 = 600. By considering the total network size, we
set the value 𝐿 as 50 % to the diameter of networks and we
performed 100 iterations for all graphs.

Simulation Results. In the simulation, we obtain two different

TABLE I. DETECTION PROBABILITIES WITH UNKNOWN
DISTRIBUTION FOR GENERAL GRAPHS (𝐿 = 50% OF NETWORK

DIAMETER, (K):KNOWN DISTRIBUTION)

Distribution ER SW SF Torus FB US
No Protector 0.02 0.03 0.02 0.03 0.01 0.03

Uniform 0.02 0.03 0.04 0.04 0.02 0.03
Zipf 0.10 0.08 0.10 0.15 0.06 0.10
(K) (0.13) (0.10) (0.11) (0.21) (0.07) (0.11)

Geometric 0.07 0.07 0.07 0.13 0.04 0.07
(K) (0.10) (0.08) (0.09) (0.18) (0.06) (0.08)

Poisson 0.09 0.09 0.08 0.12 0.05 0.08
(K) (0.11) (0.11) (0.10) (0.14) (0.09) (0.09)

results as in Fig. 3 such as the known distribution (K) and
unknown distribution (U), respectively. The x-axis of the figure
indicates the distance between true source and estimator (Er-
ror) and the y-axis indicates Cumulative Distribution Function
(CDF) of the errors. Clearly, zero error means the exact
detection probability. We use DGBA for ER, SW, SF and FB
graphs, and use DSBA for Torus and US networks. The results
show that if the distance distribution is known as a priori,
the detection performances of MAP-BFS heuristic are better
than that of the case of no protector and no priori information
(i.e., Uniform distribution). It is hard to be beyond 5% for
the case of no protector and no priori information but, if
the distance information is given, we see that the detection
probabilities can be beyond 10 % for the synthetic as well
as real world topology even for our parameter setting with
the estimated parameter. In the case of unknown distribution,
the detection performances decrease compared to those of
known distribution case. However, there are non-negligible
enhancements from the result of no protector (See Table I).

V. CONCLUSION

In this paper, we consider the rumor source detection
problem in presence of passive protector that spreads the anti-
rumor, where we provide the analytical results that MLE does
not increase the detection capability as increasing the number
of infected nodes, but MAPE with learning of the distribution
parameters of the distance between the protector source and
the rumor source significantly contributes to improving the
detection power. As a future works, we will consider the
active protector’s diffusion that the anti-rumor starts spreading
simultaneously to the rumor source.
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