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Abstract—In this paper, we address the problem of associating
mobile stations with base stations (BSs) in an energy-efficient
manner. We take the population game approach, which allows
tractable analysis of many selfish mobiles without growing
mathematical complexity, where our study provides two practical
implications on energy-efficient BS associations: (i) how to control
so-called association pricing so that an entire cellular network
is operated with the goal of optimizing a social objective,
and (ii) how to develop distributed, energy-efficient association
algorithms. To that end, we first define a game, where mobile
stations are the players, and their association portion for different
base stations are their strategies. Then, from our equilibrium
analysis, we prove that a simple power-dependent pricing by
operators leads Nash equilibrium to be equal to the optimal
solution of a social optimization problem (i.e., zero price-of-
anarchy). Next, we study three evolution dynamics of mobile
stations, each expressed as a differential equation, and connect
each of them to a distributed association control mechanism,
where three dynamics provably or experimentally converge to
the Nash equilibrium (which is equal to the socially optimal
point).

I. INTRODUCTION

In response to high data demand in cellular systems, user

association problem, the problem of associating a mobile

station (MS) 1 with an appropriate base station (BS) is of prime

importance. It has been evidenced in literature that a simple

approach of connecting an MS to the BS providing the highest

received signal strength has a lot of performance problems

due to its load-agnostic behavior. In fact, the user population

in a cell has significant impact on the actual individual MS

throughput, thereby many load-aware association schemes

have been proposed to date [1]–[12].

In addition to performance, energy-efficiency in wireless

networks is also an important metric. Especially, recent inter-

ests in greening such as the CO2’s potential harms (e.g., global

warming) to the environment as well as the economic issues re-

cently motivate a surge of energy-efficient research. There are

many components to save energy in cellular networks, ranging

from cooler and power amplifiers to dynamic switching on/off

of BSs. User association is also highly involved in energy

1We use ‘user’, ‘MS’, and ‘players’ interchangeably throughout this paper.
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consumption in the network, and the need of user association

mechanisms, which is both energy and load aware, grows.

There exists a complex interplay between energy-efficiency

and performance (such as throughput or delay), often showing

a tradeoff. This is because high performance requires load

balancing of MSs, whereas energy efficiency increases when

MSs are associated with nearby BSs, often suffers from load-

imbalance.

In this paper, we study an energy-efficient user association

problem from a population game-theoretic perspective. Popu-

lation game [13] groups the entire MSs into a finite number of

classes of infinitesimal MSs having similar attributes, e.g., the

set of connectable BSs, their link conditions, and the spatial

traffic distribution. This enables us to have a mathematically

tractable framework without growing mathematical complexity

and easily obtain the implications into distributed BS asso-

ciation mechanisms. Our model uses a flow-level dynamic

where data traffic is initiated at random and its workload is

also random, so that after a random amount of sojourn time

in the system it leaves. This flow-level dynamic seems to

provide more practical intuitions and results than the statically

backlogged setting often taken in other researches. In our

flow-level dynamic, we model spatially heterogenous traffic

distribution and also capture signal degradation incurred by

interference from other BSs.

In our game, we model the payoff function by the com-

bination of the selfish performance objective of users and

the cost for using BSs’ energy, where an user’s selfish per-

formance objective is described by the delay performance

conditioned that the user’s offering load. We first prove that

the population game designed by the aforementioned payoff

function becomes a potential game. In potential game, Nash

equilibrium (NE) is characterized by the Karush-Kuhn-Tucker

(KKT) condition of the potential function, offering an easy

path to the equilibrium analysis. Then, we prove that the NE

coincides with the socially optimal point, implying there is no

price-of-anarchy. This remarkable result stems from a smart

association pricing scheme, instilled as a cost part of user’s

payoff function.

Next, we consider three kinds of evolutionary dynamics, the

best response dynamic, replicator dynamic, and Brown-von

Neumann-Nash (BNN) dynamic, each of which captures how

mobiles evolve over the system state changes. As studied in

literature, the best response and BNN dynamics provably con-
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verge to the NE. Unfortunately, the replicator dynamic may not

converge to a stationary point that is not NE, but under some

reasonable conditions of initial points, we experimentally show

that the replicator dynamic is also highly likely to converge

to NE. Three dynamics were originally developed to model

selfish players in population games, but we connect them to

energy-efficient, distributed association control algorithms. In

fact, we show that a distributed algorithm developed from

an optimization’s perspective can be reverse-engineered by

a game-theoretic approach, with more practical advantages

being obtained in the algorithm derived from our population

game approach.

Related work

Recently, the authors in [10] formulate an optimization

problem that trade offs performance and energy efficiency,

and study both energy-efficient association and dynamics BS

on/off switching. They use a time-scale separation between

association and on/off operations, enabling two different prob-

lems. The social objective function in our paper is equivalent

to that in [10] without BS dynamic on/off switching. However,

our paper significantly differs from [10] in that we approach

the problem from the game-theoretic perspective. Specifically,

using a population game framework, we consider a finite

number of classes in describing different heterogenous traffic

characteristics and a discrete set of MS data rates; in [9], [10],

it was assumed that there exist number of classes and data rates

are continuous for simplicity. However, this simplification does

not capture the real systems well, and the deterministic user

association [9], [10] does not generally achieve optimality with

a finite number of classes in practice. This is because the cell

boundary should be a region, not a line as in [9], [10] when

adaptive modulation and coding (AMC) is employed. The area

of cell boundary can be very large, and thus probabilistic user

association is required to achieve optimality without causing

ping-pong effect. This becomes particularly important when

the traffic load is high, where the regime when the load

balancing is indeed of paramount importance. We show that

our algorithm motivated by the best response dynamic resolves

this issue and substantially improves the performance. See

Section IV for more details.

There exists work, see e.g., [11], [14], [15] that studies a

BS/WLAN association problem in a game-theoretic setting.

[14] used the user performance of UDP/TCP throughput with

varying frame length over WLAN access points, whereas we

use flow-level delay as a performance metric which depends

on BS load. The authors in [11] suggested the general concave

utility function, formulated a game, and proved that the total

utility is maximized at the Nash equilibrium. The work in [15]

studied a Stackelberg game between BS placement and user

association. The main difference from the above lies in that we

consider both energy-efficiency and flow-level dynamic using

a population game.

Other related work includes [16], which studies the load

balancing problem among server farms (where a server can be

considered as a BS in our case) using game theory. In [16],

the authors assumed a fixed processing capacity of each server

and the capacity does not depend on users. We model spatially

heterogeneous users, and thus BS-user capacity should differ

across users, which makes the problem much more challeng-

ing. There exists an array of research on BS load-balancing.

Some of earlier studies assumed a centralized processor that

establishes cell load-balancing [1]–[7]. Due to its weakness in

terms of scalability and flexibility, the distributed algorithms

were proposed [8]–[10]. We refer the readers to [17] for a list

of networking problems analyzed by population game theory.

Greening with focusing on dynamic BS on/off switching has

been studied in [10], [18]–[21].

II. PRELIMINARIES AND MODEL

A. Population Game

Basic concepts. We briefly provide the basics of population

game, which we refer the readers to [13] for more details. A

population game F is defined by the society of continuous

mass of user groups called classes. Denote the set of classes

by Q and the number of classes by Q. Each class q ∈ Q has

continuous mass dq . Each class q has its own strategy sets

Sq = {1, ..., Sq}. A single entity in the class is called player,

and each player in class q selects its own strategy among the

strategy set Sq . The state of class q is defined as its distribution

of strategic decisions, denoted as yq = [yq1, ..., y
q
Sq ], where yqi

represents the mass of players in class q who plays strategy

i ∈ Sq . The set of states of class q is denoted as Yq = {yq ∈
R

Sq

+ |
∑

i∈Sq y
q
i = dq}. The social state y = [y1, ..., yQ] is

simply a cartesian product of the class states. Again, the set

of all possible social states is denoted as Y =
∏

q∈Q
Yq . The

marginal payoff function F q
i per unit mass of each class q

for each strategy i is defined on each social state. Thus, we

have a collection of marginal payoff functions F = (F q
i :

i ∈ Sq, q ∈ Q). We also use F to name a population game

for notional simplicity. Each player in each class receives its

payoff depending on its own strategic decision. The aggregate

payoff of class q is
∑

i∈Sq y
q
i F

q
i (y).

Best response and Nash equilibria. A solution concept that

is generally used in game theory is called Nash equilibrium.

This notion is also used in population games. We first define

the concept of best response correspondence, which means a

set of selfishly optimal strategies given a social state. In class

q, the pure best response correspondence bq : Y → Sq is

defined by bq(y) = argmaxi∈Sq F
q
i (y). Also, the mixed best

response correspondence for class q is defined as Bq(y) =
{xq ∈ Yq : xq

i > 0 → i ∈ bq(y)}.

Definition 1: A social state y ∈ Y is a Nash equilibrium

of the population game F if every player in the society is

choosing the best response of y, i.e., the set of all Nash

equilibria NE(F ) is:

NE(F ) = {y ∈ Y : yq ∈ Bq(y) for all q ∈ Q}.

Potential game. If the payoff function F has a special form,

the characterization and analysis of Nash equilibria becomes

much more tractable.
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Fig. 1: System Model and Notations.

Definition 2: A population game F is a potential game if

there exists a C1 function called potential function Φ : Y →
R, satisfying ∂Φ

∂y
q

i

(y) = F q
i (y), i.e., ∇Φ(y) = F (y), for all

y ∈ Y, i ∈ Sq , and q ∈ Q.

In the potential game, the strategic improvement of users

increases potential function. Thus, at the local maxima of the

potential function, there exist no incentives for each player

to deviate from its own decision. In other words, the local

maximum of the potential function is equivalent to a Nash

equilibrium, as summarized as the following theorem [13]:

Theorem 1: If a population game F is a potential game

with the potential function Φ, then NE(F ) = KKT(Φ), where

KKT(Φ) is the set of points satisfying the KKT condition of

Φ.

B. System Model

Network and Users. We consider a cellular network consisting

of a set S of BSs. The society corresponds to the set Q of

all users, composed of a finite set of classes, where a class

q is a population of users who commonly share (i) the set

Sq of BSs allowing association to the entities of class q and

(ii) the link capacity from each of such BSs, (iii) the traffic

characteristic. As mentioned earlier, we assume that each class

q has a continuous mass of users, and the class-q mass is

denoted by dq .

Traffic, Capacity, and Load. All users in class q have a

Poisson arrival of file transfer requests with rate λq , and each

file size is independently distributed with mean 1/µq. Thus,

the total request rate of class q is λqdq. Let the traffic load

density of class q per unit mass be γq = λq/µq. As mentioned

earlier, we assume that all users in the same class receive the

same link capacity from each BSs. Denote cqi the link capacity

that each user in class q can achieve from the BS i. Note that

cqi may differ among all pairs of user classes and BSs and

cqi can capture the inter-cell interference as well. The system-

load density ̺qi is defined as the time fraction required by

BS i to serve the request from the unit mass of the class q,

i.e., ̺qi = γq/cqi , where it is assumed mini ̺
q
i < ∞, which

means there exists at least one BS which provides positive

link capacity to the class q and thus can serve the request

from the class q. Let ρi be the load of the BS i. The load ρi
is represented as the sum of the traffic loads in BS i from all

classes, i.e., ρi =
∑

q∈Q
̺qi y

q
i . The ρi can be interpreted as the

fraction of time needed in BS i to serve the entire incoming

traffic. The load ρi should be less than 1 in order to make the

system stable, which is assumed in this paper. Fig. 1 visually

explains our system model.

BS Energy Model. We model BSs’ energy consumption by a

combination of the static power consumed whenever a BS is

turned on and the load-dependent power, where each portion

is tunable by a parameter, as stated next:

Energy consumption of BS i = (1− qi)ρiPi + qiPi, (1)

where Pi is the amount of energy of BS i when fully utilized

and 0 ≤ qi ≤ 1 is the parameter quantifying the portion of the

static power at BS i. For example, the case qi = 0 corresponds

to the BS that is entirely energy-proportional. In practice, a

typical UMTS BS consumes 800-1500W for static power and

20-40W for RF output power [10], and qi is not close to 0; the

range of qi is roughly 0.5–0.8 in 3G cellular networks [22].

III. ASSOCIATION GAME AND EQUILIBRIUM ANALYSIS

We now define a population game, called association game,

by completing the model of (marginal) payoff function for

each class. Prior to the game description, we first present a

social optimization problem that is intended to be solved by a

regulator, e.g., an MNO (Mobile Network Operator). We later

compare the equilibrium of the defined game and the optimal

solution of the social optimization problem.

A. Social Objective

Consider the following optimization problem:

maximize Φ(y) = ΦF,α(y) + ηΦG(y) (2)

subject to ρi =
∑

q∈Q

yqi ̺
q
i < 1 for all i ∈ S

and
∑

i∈Sq

yqi = dq for all q ∈ Q,

where the term ΦF,α(y) corresponds to flow-level perfor-

mance, the term ΦG(y) represents the amount of energy

consumption, and η ≥ 0 is the parameter that trades off those

two metrics.

For the performance term ΦF,α(y) in (2), we take the

approach in [9] that parameterizes the flow-level efficiency

with α:

ΦF,α(y) =























−
∑

i∈S

(1− ρi(y))
1−α − 1

α− 1
, α 6= 1

−
∑

i∈S

log

(

1

1− ρi(y)

)

, α = 1.

(3)

The parameter α is called degree of load balancing. For

α = 0, the function becomes
∑

i∈S
ρi, hence the users have
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rate-optimal behavior. For α = 2, corresponding to delay-

optimal, the function becomes
∑

i∈S

ρi

1−ρi
, which is propor-

tional to the average delay of M/GI/1 multi-class processor

sharing queue [23]. The second term in (2) represents the total

energy consumption of BSs (simply corresponding to a cost

term), given by the summation of consumed energy over all

BSs:

ΦG(y) = −
∑

i∈S

[(1− qi)ρi(y)Pi + qiPi] . (4)

Note that we put negative signs to both terms in (2) simply to

make the target optimization a maximization problem.

B. User Association Game Formulation

We now design our association game for which we need

to define the marginal payoff function for each class q and

each strategy available to the class q. Note that the marginal

payoff function is interpreted as the payoff obtained by the

newcomers in the corresponding class when all other users’

strategies are given. We consider the following form of the

marginal payoff function:

F q
i (y) = −

[

̺qi
(1 − ρi(y))α

+ ηPi̺
q
i (1− qi)

]

= −̺qi
[

(1− ρi(y))
−α + ηPi(1 − qi)

]

. (5)

The payoff function F q
i (y) is structured by two major terms:

(i) selfish flow-level utility and (ii) power pricing.

(i) Selfish flow-level utility. The first term of (5) denotes the

selfish utility motivated by the selfish flow-level perfor-

mance. For α = 0, the first term becomes ̺qi (= γq/cqi ),
directing users to selfishly prefer the BSs providing high

rate without considering the offered load in the associ-

ating BS. For α = 1, this term becomes proportional to

the conditional delay experienced by the users in the

class q, where the conditional delay means the delay

experienced by an user conditioned on associating with

a particular BS, i in this case (see [9], [16] that use

the notion of conditional delay under different models

for different purposes). As α grows, users increasingly

take into consideration the BS loads in association, as the

payoff function decades more sharply with increasing ρi.
(ii) Power Pricing. The second term corresponds to the

consumed energy of BS i to serve the users in class q.
Note that this term does not depend on the social state,

implying that the cost of associating with a particular BS

is independent of other class’ offered load. Recall that

1−qi is the portion of load-dependent, consumed energy.

Thus, Pi̺
q
i (1− qi) corresponds to the consumed energy

only by class q, that can be interpreted as the price

that an user in class q should pay to use BS i’s power

resource. An interesting feature is that when qi = 1
(energy unproportional), there is no incurred power cost

in this marginal payoff function.

C. Equilibrium Analysis and Price-of-Anarchy

In this subsection, we provide the equilibrium analysis of

our game. Three main features of our interests are: existence,

uniqueness, and Price-of-Anarchy (PoA) of the equilibrium

(i.e., NE). Let y⋆ and yNE be the socially optimal solution of

(2) and an NE (if it exists). Then, in this paper, we define PoA

to be |Φ(y⋆)−Φ(yNE)|. In many cases, it is quite challenging

and mathematically complex to analyze those three features,

especially when the game has a large degree of couplings.

However, our game is provably a potential game, opening an

easy path to the analysis, as we will henceforth discuss in this

subsection.

We first prove that our association game is a potential game.

Lemma 1 states that the social objective function in (2) is the

potential function.

Lemma 1: The objective function Φ(y) in (2) is a potential

function of the population game with the marginal payoff

function (5).

Proof: From Definition 2, it suffices to check ∂Φ
∂y

q

i

(y) =

F q
i (y). For the case of α = 1,

∂Φ

∂yqi
(y)

= −
∂

∂yqi

[

∑

i∈S

log

(

1

1− ρi

)

+ ηΦG(y)

]

= −

[

(1 − ρi) ·
1

(1 − ρi)2
·
∂ρi
∂yqi

+ η(1 − qi)Pi

∂ρi
∂yqi

]

= −̺qi
[

(1− ρi)
−1 + ηPi(1− qi)

]

= F q
i (y).

Similarly, for the case of α 6= 1,

∂Φ

∂yqi
(y)

= −
∂

∂yqi

[

∑

i∈S

(1− ρi)
1−α − 1

α− 1
+ ηΦG(y)

]

= −

[

1− α

α− 1
· (1− ρi)

−α ·

(

−
∂ρi
∂yqi

)

+ η(1− qi)Pi

∂ρi
∂yqi

]

= −̺qi
[

(1− ρi)
−α + ηPi(1− qi)

]

= F q
i (y).

Lemma 2: The potential function Φ(y) is concave in y.

Proof: It has been proved by [10] that Φ is concave in

ρ. Since Φ is non-increasing in ρ, and ρ is concave over

y (since ρ is linear combination of the components of y).

From concavity-preserving operations, the composition of two

functions Φ(ρ) and ρ(y) becomes Φ(y) which is concave in

y.

From Theorem 1, the NE of our game can be easily

characterized by KKT condition of the potential function

Φ. Therefore, all NE points satisfy the KKT condition of

the potential function Φ. Lemma 2 guarantees that the local

maxima (i.e., NEs) are also the global maxima of the potential

function Φ. Note that the uniqueness of NE is not guaranteed,

which means there can be multiple association scenarios at

NEs.
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Theorem 2: Our association game defined by the marginal

payoff function (5) has zero PoA.

Proof: Lemma 2 implies that the optimization problem

(2) is indeed convex optimization problem, and has zero

duality gap. Thus, the points satisfying KKT condition of

the problem globally maximize the social objective function

(2). Also, from Lemma 1, the social objective function is a

potential function. Therefore, from Theorem 1, the NE of

our game coincides with the point satisfying KKT condition

of the potential function. Hence, it is guaranteed that NE

actually exists (derived from KKT condition), and all NE

points globally maximizes the social objective function.

IV. EVOLUTIONARY DYNAMICS

In this section, we consider evolutionary dynamics to study

how users’ association evolves over time and converges (if

it does). We consider three popular dynamics in the area

of population games, discuss their convergence to NE, and

connect them to practical, distributed association algorithms.

An evolutionary dynamic is expressed by a differential

equation ẏ = V (y), where V : Y → R is a state-dependent

vector field which defines the drift of the social state. To

transfer a dynamic based on a differential equation to a

concrete association algorithm, each BS i broadcasts to users

(belonging to a class having BS i as available BSs) necessary

information (e.g., load), which differs for each dynamic. Each

user is equipped with its individual Poisson clock with unit

rate and updates its strategy (i.e., association) whenever the

clock ticks, following the rule governed by the dynamic.

Clock-based strategy updates by users enable the system to

operate asynchronously, preventing possible oscillations and

ping-pong effects.

A. Replicator and BNN Dynamics

The first dynamic widely used in evolutionary dynamics is

replicator dynamic. Its basic idea is to form a drift vector based

on the average payoff of the corresponding class, where the

drift is made, so that each user prefers a strategy with larger

excess payoff (i.e., the difference between the current strategy’s

payoff and the average payoff). The replicator dynamic is

described as:

ẏqi = V (y) = yqi

(

F q
i (y)−

1

dq

∑

i∈Sq

yqiF
q
i (y)

)

, (6)

where the term F q
i (y)−

1
dq

∑

i∈Sq y
q
iF

q
i (y) corresponds to the

excess payoff of the strategy i in class q. The replicator dy-

namic is an instance of imitative protocols. In other words, at

each update epoch, each user in the class randomly encounters

another user, called opponent. If the payoff of the opponent

exceeds the user’s own payoff, then the user selects the

opponent’s strategy with probability proportional to the payoff

difference among two encounters. Replicator dynamic captures

the strategy popularity as well as the excess payoff of each

strategy in the sense that the strategy drift is both proportional

to the excess payoff of the strategy and the number of users

playing the strategy. In the association algorithm motivated

by replicator dynamic, we emulate random encountering by

letting the BSs distribute required information to the users, as

discussed later.

The second dynamic is Brown-von Neumann-Nash (BNN)

dynamic. For ease of exposition, we first define a variable

kqi to be the maximum of the excess payoff and zero: kqi ,

max
{

F q
i (y)−

1
dq

∑

i∈Sq y
q
i F

q
i (y), 0

}

. Then, BNN dynamic

is expressed as:

ẏqi = V (y) = dqkqi − yqi
∑

i∈Sq

kqi . (7)

The intuition behind BNN dynamic is that at each update

epoch, each user randomly picks a strategy and compares its

payoff with the average payoff. If the payoff of the chosen

strategy exceeds the average payoff, the user changes its own

strategy with probability proportional to the excess payoff.

We now describe the association algorithms motivated from

two dynamics. We assume that all users know the system

parameters Pi, η, qi, and α.

Two Association Algorithms from Replicator and BNN

• Each BS i: At each iteration time slot, it broadcasts ρi
and yqi to the users belonging to a class in Q(i).

• Each user u in each class q: Whenever its clock ticks,

the user calculates the marginal payoffs (F q
k : k ∈ Sq),

using the most recent BS-broadcasted information of (ρi :
i ∈ Sq) and y

q = (yqi : i ∈ Sq). Let j be the BS that the

user u is currently associated with.

– Replicator: The user computes the payoff differences

for all other BSs: Dq
ji , max(F q

i − F q
j , 0) for each

BS i ∈ Sq. Then, the user randomly selects a new BS

j′ with probability proportional to yqj′ and switches its

association to BS j′ with probability Dq
j′j/

∑

i∈Sq D
q
ij .

– BNN: The user computes the average payoff F̄ q ,
∑

i∈Sq y
q
iF

q
i /d

q. The user computes the payoff dif-

ferences for all other BSs: Dq
i , max(F q

i − F̄ q, 0)
for each BS i ∈ Sq. Then, the user randomly selects

new BS j′ uniformly, and switches to new BS j′ with

probability Dq
j′/
∑

i∈Sq D
q
i .

B. Best Response (BR) Dynamic

In the BR dynamic, at a given social state, each user

attempts to select its strategy that gives a maximum payoff.

Mathematically, BR dynamic is expressed by the map from

each state to the differential inclusion:

ẏq ∈ V q(y) = Bq(y)− yq, (8)

where recall that Bq(y) is the mixed best response corre-

spondence of the social state y. The BR-based association

algorithm is described as follows:
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Association Algorithm from BR

• Each BS i: At each iteration time slot, it broadcasts ρi to

the users belonging to a class in Q(i).
• Each user in class q: Whenever its clock ticks, using the

most recent broadcasted information of (ρi : i ∈ Sq),
the user calculates the marginal payoffs (F q

k : k ∈ Sq).
Then, it selects the new BS that provides the maximum

marginal payoff, i.e., the users select the BS jq satisfying:

jq = argmax
i∈Sq

(

−̺qi
[

(1− ρi)
−α + η(1− qi)Pi

])

. (9)

The algorithms motivated by replicator and BNN dynamics

involve the emulation of random encountering and the com-

parison with the average payoff. Both procedures require the

information of the strategic distributions of class which an

user belongs to. In association algorithms, a BS broadcasts

the strategic distribution vector y
q to the users in the class

q. However, the BR dynamic does not need such strategic

distributions, and the algorithm only compares the payoff

values across various strategies (i.e., BSs) and the payoff value

can be calculated by using only BS load vector ρ.
In [9], [10], the authors proposed a distributed algorithm

that solves the social optimization problem in (2) from an

optimization-theoretic perspective, described as: at each itera-

tion k,

j(q,k) = argmax
i∈Sq

cqi

(1 − ρ
(k)
i )−α + η(1 − qi)Pi

. (10)

We can easily check that using cqj = γq/̺qj , the criterion of

selecting BS for both algorithms—(9) for the game-inspired

algorithm from the best response dynamic and (10) for the dis-

tributed algorithm in [10]—are equivalent. However, there is

remarkable difference in implementing two algorithms. In the

algorithm proposed in [9], [10], all users implicitly reconsider

their BS selection strategy synchronously when BSs broadcast

their loads. Our BR dynamic assigns individual Poisson clock

to each user and runs asynchronously. This subtlety may incur

huge performance difference when the number of classes is

finite and thus when the cell boundary is not a line but a

region (so its measure is non-zero); indeed a practical data rate

setup using AMC instead of continuous Shannon capacity falls

into this category. Under this circumstance, the deterministic

user association [9], [10] forces all users in the cell boundary

to select the same BS resulting in lumped user association.

However, the optimal user association should be performed in

a probabilistic way. Our BR dynamic successfully splits users

in the cell boundary with the optimal ratio. Consequently, even

though BR dynamic is individually deterministic it behaves in

a collectively probabilistic way and converges to the optimal

point.

C. Convergence and Comparison

This section is devoted to summarizing the convergence of

three dynamics and discussing their differences in convergence

speed inside our association problem context. Convergence

of three dynamics has been well studied in literature. Thus

we refer the readers to [13], [24], [25] for more details. We

first define a notion of positive correlation (PC) related to

a sufficient condition under which an evolutionary dynamic

converges to NE.

Definition 3: ẏ = V (y) is positively correlated if

V (y) · F (y)

=
∑

q∈Q

∑

i∈Sq

F q
i (y)V

q
i (y) > 0 whenever V (y) 6= 0.

Positive correlation states that the drift rate and the payoff

values are positively correlated. In potential games, if the

dynamic satisfies PC then the potential function becomes

Lyapunov function; the potential function Φ acts as a (global)

Lyapunov function of the dynamic, since for all solution

trajectories yt, (i) d
dt
Φ(yt) = ∇Φ(y) · ẏt = F (yt) ·V (yt) ≥ 0

and (ii) V (yt) = 0 whenever d
dt
Φ(yt) = 0 from PC. This

means that all solution trajectories of the dynamic satisfying

PC are nondecreasing until a stationary point, i.e., a point y
with ẏ = V (y) = 0. Thus, all solution trajectories eventually

converge to a stationary point.

All three dynamics are known to be provably positive corre-

lated. However, all stationary points are not necessarily NEs,

where the dynamic converges to either (i) a local maximum of

the Lyapunov function or (ii) a boundary point of the set Y .

Another condition that enables a stationary point to be a NE

is so-called non-complacency (NC) or Nash stationarity. The

BNN and BR dynamics satisfy NC, allowing those two dy-

namics to converge to a NE. However, the replicator dynamic

does not satisfy NC, opening possibility of convergence to

a stationary point that is not NE. Nonetheless, as shown in

Section V, replicator dynamic seems to converge to NE in

many cases. From our experience when there exists a positive

portion of players associating with each BS in the initial

condition, even the replicator dynamic converges to NE.

We now discuss the convergence speed of three dynamics.

The BR dynamic does not perform any probabilistic operations

and just switches to the BS providing the largest payoff,

whereas the algorithms from replicator and BNN dynamics

switch to better BSs probabilistically. This makes the con-

vergence speed of BR faster than that of the other two.

However, there is more chance of instability in the BR-based

algorithm and it is usually implemented with certain relaxation

parameter. Also, the convergence speed of replicator and BNN

dynamics depends on initial conditions, as will be numerically

verified in Section V. If the initial distribution is biased to one

strategy and the stationary distribution is relatively uniform,

the convergence speed of BNN dynamic is faster than that of

replicator dynamic. This is because replicator dynamic tends

to drift to more popular strategy and it is hard to exit from

the initial biased point because the initially dominant strategy

is relatively more preferred. However, in the opposite case

when initial distribution is relatively uniform and the stationary

distribution is biased, replicator dynamic converges faster than
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Fig. 2: Representation of simulation environment. The solid

and dashed line represent the coverage of BSs 1 and 2, re-

spectively. The shaded region represents the tie region between

BSs 1 and 2.

BNN dynamic, because BNN dynamic continuously selects

suboptimal strategy uniformly.

V. SIMULATION RESULTS

We consider a cellular network topology shown in Fig. 2

consisting of two urban macro BSs within 1 × 1 km2. The

transmission power of each BS is 43dBm, and the maximum

operating power of BSs is 865W. SINR value for determining

link capacity was calculated from the modified COST 231

Hata path loss model from IEEE 802.16m (mobile WiMAX)

document [26]. Based on the calculated SINR values, AMC

was also simulated from the mobile WiMAX standard ref-

erences [27], [28]. The red and blue contours represent the

AMC level separations of BS 1 and BS 2, respectively.

In this two-cell case, the inter-cell interference term was

ignored. This is not unrealistic, because the current cellular

standard uses fractional frequency reuse (FFR) and adjacent

cells use different frequency band in order to reduce inter-cell

interference. Note that the shaded region depicts the potential

cell boundary between BS 1 and BS 2; all users in these region

receive the same data rate from two BSs, and the decision

metric becomes identical (i.e., a tie occurs) when the loads of

two BSs are equal.

Fig. 3 shows the simulation results under this setup. The

load-balancing factor α is set to 2, i.e., delay-optimal, and the

energy-delay tradeoff factor η is set to 10−1. Both BSs are

assumed to be energy-proportional. Due to space limitation,

we show the plots for the above-mentioned parameters, but we

observed similar trends for other choices of system parameters.

We assume the spatially homogeneous traffic distribution, so

we henceforth denote γq as just γ. Homogeneous traffic distri-

bution is just adopted for simplicity, but similar interpretations

in this section can be made for other heterogeneous cases.

First, Figs. 3(a) and (b) show the time-varying behavior

of three dynamics starting from different initial points. In

terms of the convergence, three dynamics converge to the same

point, which is a NE and also the socially optimal solution,

as seen in Fig. 3(a). However, the convergence speed of each

dynamic depends on the initial points except the BR dynamic.

As seen in Figs. 3(a) and (b), the BR converges fastest, but

that replicator and BNN dynamics show situation-dependent

convergence speed, as discussed next.

Fig. 3 (a) starts with heavily (1% vs 99%) biased association

in the shaded region in Fig. 2. The socially optimal association

in this region should be the 50%–50% split distribution due to

symmetry. As shown in the Fig. 3 (a), replicator dynamic exits

from the initial point much more slowly than other dynamics.

This occurs because replicator dynamic tends to select more

“popular” BSs. Fig. 3 (b) shows the opposite scenario. The

initial point is set as equally split distribution in deciding

BSs except one of the non-shaded region in Fig. 2. In non-

shaded region, the optimal strategy is that all users simply

select the BS that gives the higher data rate. Starting from

50%–50% distribution, replicator dynamic converges fast to

the optimal distribution, whereas BNN dynamic does not. The

intuition is as follows; while in replicator dynamic users tend

to pick more popular strategies, in BNN dynamic users choose

one strategy at random and compare its payoff with average

payoff at each selection instant. In BNN dynamic, users are

more likely to make choose suboptimal decisions, compared to

replicator dynamic, resulting in drastically slow convergence.

Note again that BR dynamic needs not worry about the initial

point and dominates other two dynamics in convergence speed.

Finally, Fig. 3 (c) shows the remarkable difference between

[9], [10] and our work. We see an order of magnitude

difference in delay for the same power consumption when

the load is high. As explained in Section IV-B, the users

in the cell boundary make the same decision in [9], [10].

Hence, the algorithm in [9], [10] cannot avoid ping-pong

effect happening in the shaded region under the setup in

this paper. However, the proposed dynamics including BR

dynamic achieves an optimally split association. Simulations

were performed for varying traffic density γ. As γ increases,

the total power consumption increases. Since symmetric BS

setting is assumed, total power consumption is the same

in both deterministic and splitting scenarios. As shown in

Fig. 3 (c), the split association scheme is far more efficient

than the one in [10] in terms of minimizing delay. Specifically

when γ = 1.55×10−4, the deterministic association generates

heavily unbalanced load between two BSs and the average

flow delay becomes almost 32 times larger than our splitting

association. We then can conclude that the splitting association

plays an important role for load balancing when traffic density

γ is high and becomes more practical than the one in [9], [10].

VI. CONCLUSION

In this paper, we have studied an energy-efficient BS associ-

ation problem from a population game perspective. Our study
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Fig. 3: Simulation results: convergence and delay vs. power consumption with increasing traffic density

has revealed that the proposed distribution association algo-

rithms (motivated by various evolutionary dynamics) converge

to the socially optimal point through appropriate association

pricing. Future work will more focus on the behavior at the

cell edge and the practical implementation of the algorithms.

For example, in the case of BR dynamic, it is of interest to

determine how to control the Poisson clock to guarantee fast

convergence as well as no (or little if any) oscillation of user

association.
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