
Distributed Slot Scheduling for QoS Guarantee over
TSCH-based IoT Networks via Adaptive Parameterization

Jinhwan Jung, Daewoo Kim, Taeyoung Lee, Joohyun Kang, Namjo Ahn, Yung Yi
Department of Electrical Engineering, KAIST, South Korea

{jhjung,dwkim,taeyoung.lee,joohyun.kang,njahn}@lanada.kaist.ac.kr,yiyung@kaist.edu

ABSTRACT

Internet of Things (IoT), which connects a large number of devices

with wireless connectivity, has come into the spotlight. As the scope

of IoT applications becomes wider, we observe a surge of mission-

critical IoT services, e.g., industrial automation systems and medical

IoT systems, requiring to satisfy stringent latency, reliability, and/or

energy efficiency guarantees. For this purpose, a new MAC, called

Time Slotted Channel Hopping (TSCH), has been standardized in

IEEE 802.15.4e. However, it is challenging to design a distributed

scheduling protocol that achieves the required QoS and energy ef-

ficiency at the same time due to complicated tradeoff (providing

enough number of slots for QoS vs. minimizing scheduled slots

for energy efficiency). In this paper, we propose a novel framework

for providing QoS, called SSAP, which is designed to maximize

network lifetime in a distributed fashion while satisfying given re-

liability and latency requirements. To this end, we decompose our

goal into two crucial design components: (i) scheduling of slot and

channel, and (ii) control of medium access period, each of which is

performed by low-complexity and distributed mechanisms. To the

best of our knowledge, this paper is the first work to comprehen-

sively handle multiple QoSes for TSCH-based IoT networks. We

implement SSAP in Contiki OS and perform extensive simulations

and real experiments under various scenarios. Our evaluation results

demonstrate that SSAP satisfies highly reliable communication and

latency requirements while having the network lifetime that is 1.6

times longer compared to existing protocols for TSCH.

CCS CONCEPTS

• Networks→ Link-layer protocols; Network experimentation;

• Computer systems organization→ Sensor networks.

KEYWORDS

TSCH, Distributed algorithm, Internet-of-Things (IoT)

1 INTRODUCTION

Among a large class of IoT applications, mission-critical ones, e.g.,

industrial automation systems and medical IoT systems, which re-

quire stringent guarantee of reliability and latency have recently been

given considerable attention. To tackle these challenges, a new IoT

networking standard, called Time Slotted Channel Hopping (TSCH)

[1] has been adopted by IEEE 802.15.4e. TSCH is a TDMA-based

MAC protocol with channel hopping, being inherited from the earlier

industrial standards such as WirelessHART [30] and ISA100.11a

[15]. TSCH is motivated by the fact that contention-based MAC

protocols such as CSMA, adopted in many standard and propri-

etary communication protocols for IoT, may not meet stringent QoS

required for mission-critical IoT [32].

One of the core design components for providing QoS in TSCH

is a slot/channel (which we call cell) scheduling algorithm that deter-

mines which slot and which channel to allocate transmitters (TXs)

and receivers (RXs). The problem of scheduling slots in TDMA

has long been studied over a few decades, where an extensive ar-

ray of centralized and distributed algorithms have been proposed

[9, 14, 29, 31, 33, 34]. Despite many proposals on TDMA slot

scheduling, which differs depending on the adopted goal of TSCH,

scheduling in TSCH should be designed accordingly, and thus TSCH

scheduling protocols with diverse design directions have been pro-

posed, e.g., [2, 5, 6, 8, 10, 13, 17–19, 24, 27, 28, 32]. We are inter-

ested in the following key requirements of a good cell scheduling

scheme: (i) decentralized operation and (ii) support of high relia-

bility, low latency, and high energy-efficiency, which often have

tradeoffs and thus need to strike a good balance among them. An

array of recent work on TSCH scheduling has mainly focused on the

autonomous operation, largely ignoring the issue of QoS guarantee

(see more details in Section 1.1).

In this paper, we propose a distributed scheduling protocol over

TSCH that aims at maximizing the network lifetime while satisfying

given requirements of latency. In considering the network lifetime,

we instill the fairness of lifetime among nodes by employing the

notion of α-lifetime, which is analogous to α-fairness [22] in the

famous NUM (Network Utility Maximization). As in many other

TDMA protocols, each schedule in TSCH is repeated over a col-

lection of consecutive slots, called Slotframe or just frame. Then,

to achieve our goal, we start by considering a problem of jointly

finding a cell schedule and an access period schedule. As mentioned

earlier, a cell schedule specifies how to allocate transmitters (TXs)

and receivers (RXs) to the slots and channels, and an access period

of each TX-RX pair e (simply edge), denoted by ne , which quantifies

and parameterizes the interval when an edge e should be activated.

For example, ne = 3 means that e is activated every 3 frames. Our

protocol regards #»
n = [ne]e ∈E as a tunable parameter, which plays a

role of decomposing the TSCH scheduling into (i) how to provide at

least one time slot for each link and (ii) how often we activate such

links. This simple parameterization is very powerful in the sense

that each of (i) and (ii) obtains the chance of being easily distributed

with low cost operations by forming just a weak-coupling between

two components. We now summarize each components as follows:

◦ Cell scheduling. In this component, we just purely focus on de-

veloping a cell scheduling which generates almost-zero collisions,

i.e., high link-level reliability. To this end, we employ a greedy and

distributed cell allocation mechanism to allocate a slot/channel for

each edge without overlapping slots and channels among nodes,

i.e., providing at least one-slot (ALOS) chance of communication.

This cell allocation mechanism can be characterized by the proba-

bility to deliver a packet, say re , for each edge e. This link-level

IPSN ’20, April 21-24, 2020, Sydney, Australia Jinhwan Jung, Daewoo Kim, Taeyoung Lee, Joohyun Kang, Namjo Ahn, Yung Yi

reliability is transferred to the component of access period control

in the form of end-to-end latency.

◦ Access period control. Given a cell scheduling with the link-level

reliability re for each edge e, we propose a distributed algorithm

that finds the optimal access period vector. By optimal, we mean

that it maximizes the network lifetime while satisfying given end-

to-end latency on average and traffic requirements. To generalize

the network lifetime, we introduce an α-lifetime maximization

problem, where using a standard dual-decomposition, we develop

a distributed mechanism that requires only local message passing.

Our contribution lies in proposing a framework with implementa-

tion amenability consisting of ALOS cell scheduling and access

period control. Thus, prior cell scheduling algorithms, e.g., [8, 18],

can also replace our cell scheduling component with different link-

level reliability guarantee, which produces a different optimal

access period vector.

Realizing the aforementioned design philosophies, we propose a

novel MAC protocol for TSCH with QoS guarantee, called SSAP

(Slot Scheduling with Adaptive Parameterization). To evaluate SSAP,

we implement it on the Contiki OS [7]. In simulations, we use Cooja

simulator included in the Contiki OS to perform extensive simu-

lations under various controlled environments. To evaluate on a

real testbed, we choose IoT-LAB [4] (an open IoT testbed) with

50 M3 nodes where the M3 node is equipped with 2.4 GHz radio

for 802.15.4. Our evaluations show that SSAP satisfies the delay re-

quirements from applications while improving the network lifetime,

which measures energy efficiency, by up to 60% compared to that of

other algorithms.

1.1 Related Work

Prior to TSCH, two TDMA technologies, WirelessHART [30] and

ISA100.11a [15], were standardized for industrial applications with

many proposals on scheduling algorithms, e.g., [9, 14, 29, 31, 33,

34], just to name a few; see a survey [25] of scheduling algorithms

for WirelessHART. Those algorithms are designed to operate with a

centralized coordinator that collects information from sensors and

disseminates scheduling decisions so as to maximize throughput [9,

34], minimize delay [14, 31] or increase energy efficiency [29, 33].

As an extension of IEEE 802.15.4 [20], which is one of the most

widely deployed low power network standards, IEEE 802.15.4e and

its MAC framework TSCH [1] have been standardized. In the TSCH

standard which inherits WirelessHART [30] and ISA100.11a [15], a

list of scheduling algorithms have been proposed [2, 5, 6, 8, 10, 13,

17, 19, 23, 24, 27, 28, 32, 35]; see a survey in [12]. Most of those

algorithms are designed to minimize delay and maximize energy

efficiency where both the delay and the energy efficiency are closely

correlated with how slots are scheduled. We summarize more details

of those related work next.

First, there exist researches which propose a centralized (or a

distributed but requiring heavy message passing) scheduling method

that collects information from IoT sensors, sends the information to

the base station, and distributes the determined schedule to each node

for delay and energy minimization [2, 27] or for deterministic delay

bounds [19]. Second, a series of distributed scheduling algorithms

have been proposed [5, 6, 8, 10, 13, 16–18, 24, 26, 28, 32, 36]. Most

of them allocate slots for each node, so as to guarantee minimum re-

quired slots [6, 10], or minimize delay [5, 13, 24, 32] in a distributed

manner. Orchestra [8] was proposed as an autonomous scheduling

algorithm, and then the protocols improving Orchestra have been

proposed to take the tradeoff between energy efficiency and reliabil-

ity [17], to minimize delay [28], or to support heavy bi-directional

traffic [18].

Difference from prior work. Looking at the recent proposals on

TSCH scheduling, e.g., Orchestra [8] and its follow-up works [17, 18,

28], their focus was more on autonomous scheduling methods which

allocate slots based only on the routing information without any

overhead for scheduling. Those autonomous scheduling protocols

would have a big advantage for dynamic environments. However,

we focus more on QoS guarantee because emerging industrial IoT

applications are becoming QoS-hugry in terms of energy efficiency,

latency, and reliability. Note that we consider the latency QoS as the

expected end-to-end latency so as to achieve the QoSes of energy

efficiency and latency simultaneously in a distributed manner.1 In

handling such issues, the key problem is to construct an easily imple-

mentable framework which finds the “optimal” way of scheduling

slots/channels and to offer a tunable control knob for choosing a

certain vector of multiple QoSes, such that (a) the number of slots

allocated in each node is well balanced over a network, (b) the num-

ber of slots allocated for each path from a source to a destination is

enough to achieve delay requirements on average, and (c) those slots

should be scheduled without overlaps for high reliability. Note that

those metrics are closely coupled and are often in conflict with each

other. In this paper, we propose a parameterized scheduling frame-

work that decomposes the scheduling problem into two components:

(i) distributed cell scheduling with at-least one-slot guarantee, and

(ii) distributed mechanism for access period control.

2 BACKGROUND AND DESIGN

FRAMEWORK

In this section, we present the background of TSCH with emphasis

on slot scheduling in TSCH in Section 2.1, and in Section 2.2 we

describe the goal of this paper and the overview of our design.

2.1 Primer on TSCH

A new scheduling-based MAC, called Time Slotted Channel Hop-

ping (TSCH), has been proposed in IEEE 802.15.4e [1] for IoT ap-

plications requiring stringent QoS guarantee. Every node in TSCH

should transmit Enhanced Beacon (EB) periodically to advertise

its network information. By transmitting and receiving packets and

ACKs with its time sources (typically its parent node in the tree-

based routing structure), each node are globally synchronized. TSCH

aims at achieving high reliability and low latency through Time Di-

vision Multiple Access (TDMA) with channel hopping. Time is

divided into a sequence of slots, where as in other TDMA-based

protocols, TSCH has a fixed number of slots, called Slotframe, with

a certain scheduling pattern, which is repeated over time. To max-

imize frequency utilization, there are multiple channels (16 in the

standard [20]).

1Some prior work [19] provided deterministic delay QoS, but requiring too much

message overhead and energy consumption.

Distributed Slot Scheduling for QoS Guarantee over TSCH-based IoT Networks IPSN ’20, April 21-24, 2020, Sydney, Australia

t→v

u→v

w→s

v→s

s

v

u t

3

0

2

1

0 1 2 3 4

Slotframe length = 5CH

Slot #

w

(a) Network topology (b) Example schedule

0 1 2 3 4

Slot #

t→v

u→v

w→s

v→s

Figure 1: A network topology with 5 nodes and an example cell

schedule. Each TX-RX pair is allocated in a different cell (e.g.,

a pair uv is allocated at (luv = 0, cuv = 1)) where LSF = 5 and

NCH = 4. This schedule is repeated over Slotframes.

Of critical importance is cell scheduling (or simply scheduling)

that determines which (slot, channel) is allocated for each TX-RX

pair uv . Each TX-RX pair is allowed to perform channel hopping by

being allocated different channels over successive Slotframes. The

way of cell scheduling is not specified by TSCH, which is rather

vendor-specific. Let LSF be the length of Slotframe and NCH be the

number of channels. Then, a cell is a combination of a slot and a

channel, and given a TX-RX pair uv, we denote by Suv = (luv , cuv)

the cell allocated to uv, where 0 ≤ luv ≤ LSF − 1 and 0 ≤ cuv ≤

NCH − 1. Figs. 1 show an example network and a schedule of cell

allocation with 5 nodes. Each TX-RX pair is allocated at a certain

cell. For example, u → v means that u as a TX and v as a RX are

allocated at slot #0 and the channel 1.

2.2 Goal and Design Overview

Goal. Our goal is to develop a scheduling algorithm that achieves

end-to-end latency requirement on average while minimizing energy

consumption and stabilizing the network. We focus on providing

the expected latency guarantee rather than strict one. With random

arrival of events the strict guarantee requires too many slots (i.e.,

energy consumption) or even is infeasible due to nondeterministic

delays (e.g., queueing, link loss), while the average guarantee can

be achieved with Poission arrival, which is practical QoS for IoT

applications. Hence, we aim to guarantee the expected latency while

maximizing energy efficiency. In terms of energy efficiency, we

consider network lifetime, which quantifies how balanced energy

consumption is across the network. We aim at achieving our goal by

solving the following form of optimization: maximize the network

lifetime subject to the constraint of expected end-to-end latency.

Decomposition via weak coupling: Schedule and period control.

To this end, we take an approach of studying the target optimization

by considering the following two weakly-coupled components. (i)

at-least-one-slot (ALOS) cell scheduling: constructing a cell sched-

ule that guarantees at least one chance of communication for each

TX-RX, and (ii) access period control: controlling how often such a

schedule is activated (i.e., the period between activation) in a TX-RX

pair-specific manner. We note that some of the prior work on TSCH

scheduling [8, 18] has already proposed mechanisms with the objec-

tive in (i). However, they did not pay much attention to providing

QoSes. What we do in this paper is as follows: first, as described

in (ii), we smartly control how often each TX-RX pair should be

activated by understanding how it tradeoffs reliability, latency, and

network lifetime, and second, we propose a new ALOS cell schedul-

ing which is more amenable to access period control in (ii) and thus

provides better QoSes. This decomposition with the weak-coupling

of two modules facilitates to develop a protocol that operate in a

distributed manner. More precisely, ALOS cell scheduling solely

focuses on maximizing reliability while access period control mainly

trades off latency and energy efficiency. Those different objectives

give us a chance to decompose the problem and thus develop the

distributed protocol. We note that this decomposition incurs no loss

of optimality if we assume Poisson arrival of events with small rate.

An intuitive explanation of how access period control has impact

on multiple QoSes is as follows: When a TX-RX pair, say uv, has

smaller access period, implying that the cell schedule for uv is

activated frequently with the short period, it has a higher chance to

communicate packets, so that those packets experience low latency.

However, due to frequent activations, the RX v tends to consume

more energy by listening more frequently. On the contrary, it is

obvious that RX can save more energy with larger access period,

resulting in longer delay. Since the end-to-end delay of a packet is

determined by access period of the nodes in the routing path of the

packet and each node in the network is likely to have different offered

traffic load, for longer network lifetime, it is important to balance the

energy consumption over the entire network and guarantee the given

end-to-end delay by achieving proper per-link delay by controlling

access period.

Where is it coupled? Since the goal of scheduling becomes how

we provide at-least-one-slot chance of communication, the way it is

coupled with access period control is on how much a given ALOS

scheduling algorithm guarantees the success of a packet delivery, i.e.,

reliability. This is because the amount of reliability has an impact

on latency for 100% packet delivery, when we assume repeated

retransmission until the success of a target packet.2 This significantly

simplifies the design of ALOS cell scheduling, so that its objective is

simply reduced to the one with the minimum number of collisions.

Design overview. We now provide an overview of the design of

our proposed protocol, called SSAP (Slot Scheduling with Adaptive

Parameterization). SSAP is designed on top of TSCH and RPL

(Routing Protocol for Low-Power and Lossy Networks) which is the

de facto standard routing protocol; thus, we assume a tree structure

of nodes formed by RPL. As mentioned earlier, the key idea is to

use the weak coupling of cell scheduling and access period control

by purely focusing on developing (i) a distributed scheduling with

high reliability and (ii) a distributed algorithm to search for the

“best" access period parameter that maximizes the network lifetime

while guaranteeing the end-to-end latency3. This corresponds to

the strategy that a cell scheduling algorithm is developed under the

assumption of the access period ne = 1, for all e ∈ E, corresponding

to the worst-case of high offered load, and then controls access period

to adjust itself to actual loads but considers the network lifetime and

latency. Note that, as discussed in how two modules are coupled, in

achieving the end-to-end latency as controlling access period, we

use the per-link latency guarantee provided by the proposed cell

scheduling algorithm.

2In practice, we limit the maximum number of retransmissions.
3This implies the expected end-to-end latency unless otherwise noted.

IPSN ’20, April 21-24, 2020, Sydney, Australia Jinhwan Jung, Daewoo Kim, Taeyoung Lee, Joohyun Kang, Namjo Ahn, Yung Yi

3 CELL SCHEDULING

In this section, we present cell scheduling module of SSAP. In terms

of scheduling, we focus on one of the popular IoT applications of

collecting sensing data from sensors to a base station given a tree

topology by RPL. Although SSAP considers both uplink and down-

link traffic, we only use uplink traffic case to describe the scheduling

algorithm for simplicity. Downlink traffic case is discussed at the

end of this section.

LSF

Slot # 0 1, · · · , LSF − 1

Control cell

Data cells

0 1, · · · , LSF − 1

Data cells

K = 2

Inactivated

Ctl X

Figure 2: Structure of Slotframe, where a hyperparameter K

controls how often the control cell is activated (e.g., K = 2).

3.1 Frame Structure

A Slotframe consists of one control cell and LSF − 1 data cells, as

depicted in Fig. 2. As done in many TDMA-based MAC protocols, a

control cell is used to deliver control information such as Enhanced

Beacon (EB) for TSCH network advertisement and RPL control

packets for exchanging routing information. Although we mainly

focus on the unicast traffic, thus although it is beyond the scope of

this paper, it is also possible to use this control cell for any broadcast

traffic. We consider the case when control packets’ loads are not so

significant, so it is enough to activate control cells every K Slotframe.

3.2 Distributed Data Cell Scheduling

We describe our cell scheduling protocol by explaining at which slot

and channel an arbitrary link vp is scheduled, where v is a node and

p is its parent. Since the routing paths are in the form of a tree and we

focus on uplink traffic, the cell Svp of link vp can be simply denoted

by Sv = (lv , cv) for simplicity, unless confusion arises, where recall

that lv and cv are the allocated slot and channel for vp, respectively.

Our goal of cell scheduling is to reduce as many conflicts as pos-

sible where the conflict denotes either of a collision or interference.

We assume that two communications, which are performed over two

links in the same slot and channel, say e1 and e2, conflict with each

other, if they are located within two hops. However, if they occur

in different channels, they are conflict-free. This interference model

is known to be suitable for unicast communications using ACKs,

e.g., Wi-Fi 802.11. We also assume half-duplex radios, implying

that the communications over e1 and e2 in different channels become

successful, as long as e1 and e2 are not connected (i.e., located within

one hop).

Algorithm description. In this section, we describe how the cell

scheduling algorithm allocates data cells in a distributed manner.

Based on the given tree structure, our cell scheduling algorithm is

performed in a top-down manner. In other words, from a base station

(i.e., the root of the tree) to the leaf nodes in the tree. When a node

v receives its cell schedule Sv from its parent node p, v schedules

all of its child nodes c ∈ Cv to find a set of cells {Sc }c ∈Cv such

that (i) collisions are avoided by allocating different slots in the time

domain, and (ii) interferences are minimized by setting a channel

carefully in the frequency domain. Now we present the detailed

description of the cell scheduling algorithm.

Algorithm 1: Cell scheduling algorithm from nodes v → c

Input: Cell of v: Sv = (lv , cv), slot of p: lp

Output: Cells of v’s child c ∈ Cv : Sc = (lc , cc)

1 Set list Av ≔ [lv + 1, lv + 2, ...,LSF − 1, 1, ..., lv − 1]

2 Initialize Bv = []

3 for child node c ∈ Cv do

4 while true

5 if Av , ∅ then

6 lc ← Pop the first element from Av

7 if lc , lp then

8 Append lc at the end of Bv , then break

9 else

10 lc ← Pop the first element from Bv

11 Append lc at the end of Bv , then break

12 cc ← lv mod NCH

13 Sc ← (lc , cc)

14 return a set of cells {Sc }c ∈Cv

Algorithm 1 describes the cell scheduling algorithm in terms of

how a node v allocates its child nodes c ∈ Cv . Initially, v sets a

list Av that contains every slot of Slotframe starting from lv + 1,

except lv for itself and the slot for control cell. Another list Bv
is initialized in which this list stores allocated slots. To prevent

collision, v allocates a different slot to each of its child node c by

popping the first element from Av (Line 6). The reason why lc
should be different from lp (Line 7) is to avoid 2-hop interference,

which is described in detail later. By allocating lc for all child nodes

as described above, those nodes will be spread over the time domain

as much as possible if the number of available slots is larger than

the number of child nodes. If Av becomes empty, a slot should be

allocated among already allocated slots (which is maintained in Line

8). By choosing the first element from Bv and appending it at the

end of Bv , this slot will be allocated to one of the already allocated

slot, but the number of co-allocated child nodes is minimized (Line

10-11). It is worth noting that those child nodes which are already

allocated separately in the time domain can use the same channel

without collisions. Thus, v allocates a channel cc such that cc =

lv mod NCH where mod is modulo operator and NCH is the number

of available channels (Line 12). This channel allocation indicates

that when c ∈ Cv transmits a packet to v, they use the same channel

cc . Since cc is obtained from lv , c and some nodes which are apart

from 2-hop from c must use different channels if the number of

available channels is enough; thus, our cell scheduling minimizes

2-hop interference by separating them in the frequency domain. By

repeating the above procedure for all of v’s child nodes, v obtains a

set of cells {Sc }c ∈Cv that minimizes the collision and interference

as much as possible.

Example. We take an example to explain how the cell scheduling

algorithm actually runs. Fig. 3(a) shows a tree with 11 nodes. We

explain how a node d allocates data cells of its child nodes f ,д, and

h when d’s cell is given by its parent b as Sd = (ld = 1, cd = 0).

Assume that LSF is 6 and the number of available channels is 4. At

the beginning of the cell allocation algorithm, d sets a list Ad =

Distributed Slot Scheduling for QoS Guarantee over TSCH-based IoT Networks IPSN ’20, April 21-24, 2020, Sydney, Australia

i → f

d → b

f → d

a

2

1

0

0 1 2 3 4

CH

Slot #

(a) Network topology (b) Example cell allocation

c → b

e → c g → d h → d

5

Ctl

Ctl

Ctl

LSF = 6

b

d

g

k
j

f

i

c

e

h

Sa = (3, 2)

(4, 3)

(1, 0) (5, 1)

(3, 1)
(2, 1)

(5, 0)

(1, 1)

(3, 2)

(4, 3)
(5, 3)

b → a

j → g
3 k → gCtl

Figure 3: A small tree with 11 nodes and an example cell allo-

cation are presented. With respect to the link db (black line),

the blue colored edges denote collision links and the red lines

represent 2-hop interference links. Given the cell schedule, (b)

illustrates how they are actually allocated in terms of the time

and frequency domains.

[2, 3, 5] since lb = 4 and ld = 1 are excluded, which are already

allocated to the nodes b and d . Then, d allocates slots for f ,д, and h

as 2, 3, and 5, respectively, from the listAd . After this, Bv becomes

[2, 3, 5] so as to allocate slots again when a new child node appears

or the tree changes. After the slot allocation, the channel of those

nodes f ,д, and h is set to 1 since 1(= ld) mod 4 = 1. The black

line db in Fig. 3(a) shows that by doing so, the blue colored edges

which are collision links are allocated in different slots and the red

lines which are interference links use different channels, so that

the collision is avoided in the time domain and the interference is

mitigated by using the different channels.

v

i j

(a) A simple subtree (b) Downlink cell schedule

Ctl RX

Ctl
v→p

v→i, v→j

Ctl

2

1

0

CH

Slot #
0 1 2

(ii) Using control cell for downlink(i) Separate cell for downlink

p
Ctl RX

Ctl v→p

Ctl

2

1

0

CH

Slot #
0 1 2

Figure 4: A simple subtree example that shows how downlink

scheduling works. In (b), the left schedule allocates v → i and

v → j at separate down link cell to support downlink traffic

fromv and the right schedule uses the control slot for downlink.

Scheduling for downlink traffic. We now present how our sched-

uling supports downlink traffic that includes query, update, and

maintenance messages. We propose two methods: (i) separately allo-

cate cell for downlink or (ii) use the control slot. As shown in Figs. 4,

when downlink traffic needs to be supported reliably, we allocate

downlink edges (e.g., vi and vj) at the cell where vp is already

scheduled. Since our design of ALOS cell scheduling prevents child

and parent nodes from transmitting simultaneously in Algorithm 1

(Line 7), at each node v, the collision between the uplink from the

child nodes and the downlink from the parent node does not occur.

In addition, we can also optimize the energy usage of downlink com-

munication by controlling the access period for the downlink too.

In case of low offered load over downlink, we use the control slot

for downlink traffic rather than allocating additional slots so as to

save more energy. Hence, SSAP can support downlink cell schedule

without interrupting uplink cell schedules.

SSAP with other ALOS cell scheduling. Due to our decomposition

into weakly-coupled cell scheduling and access period control, SSAP

can function as a generalized framework that can include other

scheduling algorithm as an ALOS scheduling module. Examples

include Orchestra [8] or ALICE [18], which has focused more on

autonomous operation by scheduling cells automatically based on

each node or each link’s ID. The key difference of our scheduling

from ALICE and Orchestra lies in different reliability, which one

connects to access period control for multiple QoSes.

4 DISTRIBUTED CONTROL OF ACCESS

PERIOD

In this section, we formulate an optimization problem that controls

access period in a distributed fashion in order to maximize the

network lifetime while satisfying given latency requirements.

4.1 Formulation: α-Lifetime Maximization

Model. As we consider IoT applications that collect sensory data

from sensor nodes to a base station (BS), we assume that a network

T (V ,E) is built by some routing protocol (e.g., RPL) where V is a

set of the nodes in the network and E is a set of TX-RX edges. We

define a few notations in terms of a node v ∈ V such as Pv which

is a set of nodes in the routing path from v to BS, Cv is a set of

children of v, and Tv is a set of nodes in the subtree of v from the

tree T (V ,E).

As an IoT sensor, each node v ∈ V generates traffic following a

Poisson process with rate λself
v . In order to collect those data traffic

from each node to BS, the amount of traffic that each node should

serve is λv as follows:

λv = λself
v +

∑
c ∈Cv

λc

where we use the unit of λv as the number of packets per Slotframe.

Lifetime: Node and network. As a metric of energy efficiency, we

consider the network lifetime, which is defined in various ways such

that the time until the network cannot perform its own role (e.g.,

collecting sensory data). For example, max-min lifetime is the time

until the first node runs out of its battery or p% lifetime is the time

until p% of nodes in the network deplete their batteries. In this paper,

we generalize this concept of the network lifetime as α-lifetime by

mimicking the well-known α-fairness [22].

To this end, we first define the lifetime of a node using the power

consumption rate, determined by (i) how often it performs listening,

depending on access period ncv (simply nc) of the edge cv for all

c ∈ Cv , and (ii) the rate of transmission to its parent node, i.e., λv .

Then the power consumption rate is obtained by:

Pv (
#»
n cv) =

∑
c ∈Cv

P0

nc
+ P0λv

where the P0 is the power consumption rate of a single transmission

or listening, and #»
n cv = [nc]c ∈Cv denotes the vector of access

period for the edges cv. Consequently, the expected lifetime of the

node v is given by:

Lv (
#»
n cv) =

Bv

Pv (
#»
n cv)

where Bv is an initial energy budget of each node.

IPSN ’20, April 21-24, 2020, Sydney, Australia Jinhwan Jung, Daewoo Kim, Taeyoung Lee, Joohyun Kang, Namjo Ahn, Yung Yi

DEFINITION 4.1. The α-lifetime of network is
∑
v ∈V Uα (Lv),

where

Uα (Lv) =

{
log(Lv) if α = 1,
L1−α
v

1−α otherwise
(1)

We define the α -lifetime using each nodev’s lifetimeLv . In terms

of optimizing the α-lifetime, the case of α = 0 implies each node

behaves selfishly to maximize its own lifetime. On the other hand,

as α →∞, each node tries to maximize α -lifetime over the network,

and thus we achieve max-min network lifetime, i.e., maximizing the

minimum lifetime among nodes.

Delay. We assume that the QoS requirement of delay is given by an

application. With respect to the node v, Rv is a delay requirement

that requires the packet generated by v to arrive at BS within the

requirement, which is often called end-to-end delay. This end-to-

end delay consists of one-hop delays of all nodes in Pv , which

is the routing path from the node v to the BS as defined earlier.

Let dv be the expected one-hop delay from v to its next-hop node

p (i.e., a parent node). As the definition of access period, v can

access the scheduled cell in every nv frame, which can be regarded

as deterministic service rate. Thus, we model it as M/D/1 queue

whose arrival process is Poisson with rate λv and the service time is

determinimistic with rate 1
nv

. Then, based on the queueing theory

[3], we derive the expected one-hop delay dv as follows:

dv (nv) =
nv

2(1 − λvnv)
×

1

rv
(2)

where the last term 1
rv

is the abstracted reliability on the link vp

which is given by the cell scheduling module. This reliability is

introduced to the delay to guarantee the end-to-end delay under the

possible retransmission. Then, the expected end-to-end delay from

v to BS is
∑
k ∈Pv dk (nk).

Problem: α-lifetime maximization. In order to achieve the primal

goal of SSAP, we choose the objective function as the α-lifetime

(Eq. (1)) with the delay constraints using the expected delay from

Eq. (2). Then, the α -lifetime maximization problem LIFE_MAX(α)

can be formulated as follows:

LIFE_MAX(α) : max
#»n

∑
v ∈V

Uα (Lv (
#»
n cv)) (3)

subject to∑
k ∈Pv

dk (nk) < Rv ∀v ∈ V (4)

where we note that both Eq. (3) and Eq. (4) are the functions of #»
n

which is the vector of all access period over the network.

The above optimization requires to collect all information, such

as delay requirements and traffic rates from all nodes in the network,

to find the optimal #»
n
∗ and to distribute the obtained #»

n
∗ to all nodes.

This centralized algorithm is not scalable nor efficient especially in

low power networks for IoT applications, since the huge amount of

information should be collected and distributed. Thus, we develop a

distributed algorithm to solve this optimization, which is described

in the following section.

pvc

QvQc

Routing path Iterative update path

Dv, nvDc, nc

(a) Distributed parameter update flow

Parameter Search

Module

nc, Dc

nv, Dv

Qc

Qv

From c

From p To p

To c

(b) Update with local communication in terms of node v

Figure 5: (a) shows the distributed parameter update flow in

terms of interaction between a nodev, its parent p, and its child

c. (b) describes how the parameter search algorithm updates

via local communication.

4.2 Distributed Update: Rationale and

Description

In this section, we propose an algorithm that is designed to solve

the LIFE_MAX(α) problem in a distributed manner. In order to

develop a distributed algorithm, we first introduce the primal-dual

formulation, so that the LIFE_MAX(α) problem is translated into

the dual problem which can be decomposed into independent sub-

problems. Then we propose the parameter search algorithm that

finds the optimal access period by solving each sub-problem in a

distributed manner.

Dual problem for distributed optimization. To decompose the

problem, we construct the dual problem from LIFE_MAX(α). Let

L(#»n ,
#»
q) be the Lagrangian function with Lagrange multipliers

#»
q :

L(#»n ,
#»
q) =

∑
v ∈V

Uα (Lv (
#»
n cv)) +

∑
v ∈V

qv
©­«
Rv −

∑
k ∈Pv

dk (nk)
ª®¬

(5)

The Lagrangian function (Eq. (5)) can be decomposed into inde-

pendent sub-functions for each node v where the control variables

(i.e., #»
n cv) of each sub-function are disjoint over nodes. This decom-

position is possible due to the tree-shaped topology of the network

(e.g., TSCH networks) where traffic direction is restricted to follow

the tree structure. We can rewrite Eq. (5) as follows.

L(#»n ,
#»
q) =

∑
v ∈V

qvRv +
∑
v ∈V

Lv (
#»
n cv ,

#»
q)

Lv (
#»
n cv ,

#»
q) = Uα (Lv (

#»
n cv)) −

∑
c ∈Cv

dc (nc)
∑
k ∈Tc

qk

Each node v’s lifetime Lv (
#»
n cv) only depends on its child node

c ∈ Cv , and thus the Lagrangian function can be decomposed with

respect to #»
n cv .

On the other hand, the corresponding dual function also can be

decomposed. Given
#»
q , we define #»

n
∗(

#»
q) as the optimal #»

n that

maximizes L(#»n ,
#»
q). It can be obtained by:

#»
n
∗(

#»
q) = argmax

#»n

L(#»n ,
#»
q)

Then, given the optimal #»
n
∗, the dual objective function д(

#»
q) can be

formulated as follows:

д(
#»
q) = L(#»n ∗(q),

#»
q) (6)

Distributed Slot Scheduling for QoS Guarantee over TSCH-based IoT Networks IPSN ’20, April 21-24, 2020, Sydney, Australia

Algorithm 2: Parameter search algorithm of node v

1 while true

2 if v communicates with c: update #»
n cv

3 Receive Qc from c

4
#»
n cv ← argmaxn

[
Uα (Lv (

#»
n)) −

∑
c ∈Cv dcQc

]
5 Dc ← Dv + dc

6 Transmit nc and Dc to c

7 if v communicates with p: receive nv and update qv

8 Receive Dv and nv from p

9 qv ←
[
qv −

1
t (Rv − Dv)

]
+

10 Qv ← qv +
∑
c ∈Cv Qc

11 Transmit Qv to p

12 done

=

∑
v ∈V

qv
©­«
Rv −

∑
k ∈Pv

dk (n
∗
k
)
ª®¬
+

∑
v ∈V

Uα (Lv (
#»
n
∗
cv))

and thus, the dual problem of LIFE_MAX(α) becomes:

DP : min
#»q

д(
#»
q) (7)

subject to
#»
q ≥ 0

Similar to the Lagrangian function, the dual function Eq. (6) also

can be decomposed into independent sub-function дv (qv):

дv (qv) = qv (Rv −
∑
k ∈Pv

dk (nk))

д(
#»
q) =

∑
v ∈V

дv (qv) +
∑
v ∈V

Uα (Lv (
#»
n
∗
cv))

By this decomposition, the function parameters #»
n cv and qv of

Lv (
#»
n cv ,

#»
q) and дv (qv) are fully controlled by the single node v.

This enables us to develop the distributed parameter search algo-

rithm which solves the decomposed primal-dual problems per each

node. The proposed algorithm separately maximizes L(#»n ,
#»
q) and

minimizes д(
#»
q), and each node v achieves the global optimal of

LIFE_MAX(α), as well as that of the dual problem (Eq. (7)). We

will show that this algorithm can find the global optimal parameter

of the primal problem in Section 4.3.

Distributed update algorithm. Based on this dual formulation and

decomposition, we propose the parameter search algorithm which

runs on each node in a distributed manner. Algorithm 2 describes

how this algorithm finds the optimal access period iteratively in

terms of the node v.

As illustrated in Figs. 5, the parameter search module requires

local communication with its parent p and its child nodes c so as

to receive its access period from p and to output access period of

c ∈ Cv . In order to solve the primal and dual problems, each node

v ∈ V needs to update qv and #»
n cv iteratively.

Update #»
n cv . For child nodes c ∈ Cv to be updated, v first needs

to receive Qc (Line 3) which is the summation of delay prices qi
in Tv , we recall that Tv is a set of nodes in v’s subtree. Then, for

the given Qc , v analytically computes #»
n cv that maximizes the La-

grangian function (i.e., equivalent to maximize the α -lifetime) (Line

4). We note that this update procedure is the most computationally

expensive (e.g., Newton’s method), and thus it should be verified

that this update can be computed on a low power IoT device (See

Section 5.3). As receiving Dv (i.e., the expected end-to-end delay

from v to BS) from its parent p, it can compute Dc by adding Dv to

dc (Line 5). Then, v distributes nc ∈
#»
n cv and Dc to c (Line 6).

Receive nv and update qv . In terms of v and its parent p, v receives

the updated nv by the above update iteration done by p, and con-

currently, the end-to-end delay Dv is also given by p (Line 8). Then

the delay price qv can be obtained by the gradient descent method

with a step size 1
t using Dv (Line 9). This delay price represents

how much the delay constraint is violated, and thus by doing so, the

dual function is also minimized. Lastly, v needs to calculate Qv and

transmit it to p (Line 10-11) so as to let p update v’s access period.

Even though Qv is the accumulated summation over all nodes in its

subtree Tv , we compute Qv efficiently by using the tree structure;

thus v computes Qv as the summation of qv and received Qc from

its child nodes, which are accumulated recursively (Line 10).

4.3 Convergence and Implementation Issues

In this section, we present an analytical result about the convergence

of our distributed update of access period in Algorithm 2, and it is

followed by the discussion of implementation issues.

THEOREM 4.1. The update algorithm of access period in Algo-

rithm 2 converges to the solution of α -lifetime maximization problem

LIFE_MAX(α).

The proof is presented in Appendix.

Implementation issues. In order to implement SSAP efficiently on

IoT devices, we propose the following implementation details.

Communication for local information exchange. In order to run this

algorithm, each node requires two directional communication: one

is to its parent and the other is to its child. As the TSCH and RPL

standard indicate, there exist various types of control packets (e.g.,

EB for TSCH, DIO and DAO for RPL, respectively). Hence, those

local information can be exchanged through information embedding

on those control packets. Another approach is using piggybacking.

We exploit the unicast and ACK operation (i.e., a data packet fol-

lowed by an ACK) which should be performed in the TSCH network.

According to the standard, each unicast communication must have

Acknowledgement mechanism to maintain the global synchroniza-

tion. Thus, in terms of a node v, we embed Qv to the packet header

and receive Dv and nv which are embedded in the ACK header. Al-

though it obviously induces more overhead on each communication,

we also show that this algorithm converges in quite short time; thus,

this overhead is negligible compared to the improvement by running

this algorithm, as described in later sections.

Algorithm complexity. In order to validate low overhead of SSAP,

we evaluate the convergence of the parameter search algorithm using

simulations (the detailed simulation environments are described in

Section 5). In this evaluation, we use the above embedding mecha-

nism on data packets and ACKs. As shown in Figs. 6, in a simulation

topology, SIM with 43 nodes, we measure the change of access

period on each node with varying Poisson rate λ where each node on

different hop counts is illustrated for simplicity (U and D denote the

location of each node in the upper and down side of the topology).

IPSN ’20, April 21-24, 2020, Sydney, Australia Jinhwan Jung, Daewoo Kim, Taeyoung Lee, Joohyun Kang, Namjo Ahn, Yung Yi

U: 1-hop

U: 2-hop

U: 3-hop

D: 1-hop

D: 2-hop

D: 3-hop

D: 4-hop

D: 5-hop

C
h

a
n

g
e

 o
f
P

a
ra

m
e

te
r

0

2

4

Time (sec)
0 500 1000 1500

(a) Poisson rate λ = 0.667

U: 1-hop

U: 2-hop

U: 3-hop

D: 1-hop

D: 2-hop

D: 3-hop

D: 4-hop

D: 5-hop

C
h

a
n

g
e

 o
f
P

a
ra

m
e

te
r

−2

0

2

Time (sec)
0 500 1000 1500

(b) Poisson rate λ = 1

U: 1-hop

U: 2-hop

U: 3-hop

D: 1-hop

D: 2-hop

D: 3-hop

D: 4-hop

D: 5-hop

C
h

a
n

g
e

 o
f
P

a
ra

m
e

te
r

0

2

4

Time (sec)
0 500 1000 1500

(c) Poisson rate λ = 2

Figure 6: Evaluation on the convergence of the parameter search algorithm.

As illustrated, under all λ from 0.667 to 2 packets/min, this algo-

rithm converges within 1200 seconds. More precisely, in the case

of λ = 2, since they communicate 2 times per minute on average, it

only requires less than 20 information exchanges to be converged.

Thus, it indicates small overhead of SSAP and robustness to network

changes due to the fast convergence. In addition to the convergence,

for each of information exchange, we analyze the overhead on head-

ers of a packet and an ACK. In each iterative update, a node v only

needs to transmit and receive three variables (i.e., nv ,Dv , and Qv).

Since we fully utilize the tree structure to efficiently collect those

information, the embedded overhead can be minimized.

Adapt to environmental changes. Although SSAP is designed to sup-

port static applications without mobility, it is also crucial to adapt to

environmental changes, e.g., topology or delay requirement changes.

Any node v in SSAP has an ability to adapt to any change on the

paths that the node belongs to if this change incurs modified de-

lay Dv or delay price Qv , otherwise v do not need to update. We

note that this local change only requires to update cell scheduling

and parameter search with respect to the affected nodes due to the

distributed operation of each protocol. To validate adaptivity, we

perform two evaluations: (i) Under the same simulation environment

as the above, we make topology change of one node4; then, it re-

quires the convergence time of 195 seconds on average, while the

other nodes which are not affected by the change do not require

update. (ii) When the delay requirement of all nodes changes from

600 ms to 1200 ms, it takes 750 seconds on average to converge

again. Accordingly, we show that SSAP quickly adapts to small

changes and is designed to respond the environmental big change as

it updates and converges over again.

4.4 Putting Everything Together

We now present how SSAP works by putting the cell scheduling and

the parameter search algorithms together.

After deploying a TSCH network (e.g., a base station and sensor

nodes), the base staion of the network starts to initiate network

advertisement by transmitting EB and RPL packets. As some nodes

join the network following TSCH and RPL standards, they start to

run the cell scheduling algorithm based on their routing tree which is

built by RPL. From the base station, each node v schedules its child

nodes c ∈ Cv , so that each link cv can communicate at slot lc and

channel cc according to Sc = (lc , cc). After each node is scheduled,

it also runs the parameter search algorithm. Since this algorithm runs

in a distributed manner, each node does not have to wait until the tree

is stabilized but is able to start updates only if it is scheduled. Thus,

4A node apart from the BS by 3 hops switches its parent to the node in the same level.

S

(a) SIM: 43 nodes

!

(b) EXP: 50 nodes

Figure 7: Evaluation topologies: (a) SIM for simulations and (b)

EXP for experiments where S denotes a base station.

in terms of v, the parameter search algorithm iteratively updates

access period for all child nodes c connected to v. Assume that the

access period nc of c is given by this algorithm. Then, when the

link cv is scheduled at Sc , this schedule is activated only in every nc
Slotframe. It means that the communication on the link cv can occur

only when the cell is activated, otherwise the nodes c and v save

energy by doing nothing. More precisely, the schedule of the link

cv is activated if SFN mod nc is equal to 0, otherwise the schedule

is inactivated where SFN is obtained by ASN5 divided by LSF. As

a result, with ALOS cell scheduling, each link has enough chances

for communication so as to guarantee its delay requirement, while

the lifetime of the network can be improved by the heterogeneous

access period.

5 IMPLEMENTATION AND EVALUATION

5.1 Implementation

We implement our scheduling algorithm SSAP on Contiki OS [7],

which is an open source operating system for IoT devices. Based

on the implementation of TSCH in the Contiki OS, we modify and

implement our designs of SSAP. To construct the network topology,

the objective function of RPL is chosen as MRHOF [11] which

builds a tree using hop counts and ETX. To exchange the update

information for SSAP, we use piggybacking mechanism to data

packets and ACKs. We evaluate SSAP using Cooja simulator in the

Contiki OS to test various scenarios under a controlled environment

and use a real testbed in IoT-LAB [4] with 50 M3 nodes.

5As defined in the TSCH standard, ASN (Absolute Slot Number) is a global slot number

which increases by 1 for every elapsed slot.

Distributed Slot Scheduling for QoS Guarantee over TSCH-based IoT Networks IPSN ’20, April 21-24, 2020, Sydney, Australia

5.2 Evaluation on Simulation

Simulation environment. As a simulation environment, in order

to emulate mission-critical applications, we consider application

scenarios where data packets are generated Poisson randomly with

arrival rate λ and delay requirements are given by the application.

The hyperparameter of α-lifetime is chosen by 5, which is empiri-

cally chosen for the performances. Our simulation topology SIM is

shown in Fig. 7(a) which is composed of 43 nodes in an unbalanced

tree. We choose the unbalanced tree to emphasize heterogeneity re-

quirement among nodes. Main performance metrics of our evaluation

are composed of (i) the maximum end-to-end delay from a source to

a base station (BS), (ii) the normalized lifetime which reflects the

time until some node runs out of its battery at first, calculated by the

ratio between the intial energy budget and the energy consumption

by the radio, (iii) the average duty cycle (i.e., percentage of time

the radio is on), and (iv) the Packet Reception Ratio (PRR) which

denotes the the ratio between the number of received packets (at BS)

and the number of generated packets (at a source). We compare the

performance of SSAP with the state-of-the-art distributed scheduling

protocols, Orchestra [8] with sender-based scheduling (Orche-SB)

and ALICE [18].

SSAP

Orche-SB

ALICE

D
e

la
y
 (

m
s
)

0

500

1000

Length of Slotframe (# of slots)

7 11 15 21 26

(a) End-to-end delay

SSAP

Orche-SB

ALICEN
o

rm
a

liz
e

d
 L

if
e

ti
m

e

0

0.05

0.10

0.15

Length of Slotframe (# of slots)

7 11 15 21 26

(b) Lifetime

SSAP

Orche-SB

ALICE

D
u

ty
 c

y
c
le

 (
%

)

0

5

10

Length of Slotframe (# of slots)

7 11 15 21 26

(c) Duty cycle

SSAP

Orche-SB

ALICE

P
R

R

0.990

0.995

1.000

Length of Slotframe (# of slots)

7 11 15 21 26

(d) PRR

Figure 8: Evaluation on the impact of the length of Slotframe.

Red error bars show standard deviation.

Impact of Slotframe length. In this evaluation, we show the impact

of the length of Slotframe by varying the length from 7 to 26. Figs. 8

demonstrate the main four metrics of SSAP compared to those of

Orhce-SBS and ALICE where the arrival rate λ = 2 packets/min and

the delay requirement D is given by 1000 ms. Since SSAP has an

ability to adapt the parameters over the network to guarantee the

delay requirement, regardless of the length of Slotframe, Fig. 8(a)

shows that SSAP achieves the end-to-end delay under 1000 ms. We

note that the measured end-to-end delay is the maximum over the

nodes in the network, so that we claim that the application delay

requirement is guaranteed. While guaranteeing the delay require-

ment, SSAP also maximizes the lifetime and minimizes the energy

consumption, represented by the normalized lifetime and the duty

cycle in Figs. 8(b) and 8(c), respectively. Compared to SSAP, the

performances of Orche-SB and ALICE depend highly on the length

of Slotframe since they always allocate a slot in each Slotframe

regardless of their heterogeneity. For some Slotframe length (e.g.,

7 or 11), the delay performance is small enough to guarantee the

delay requirement; however, they consume a lot of energy so that

the lifetime is too short compared to that of SSAP. On the other

hand, the large Slotframe length (e.g., 26) can improve the lifetime,

but the delay requirement cannot be guaranteed. Fig. 8(d) shows the

PRR performance where SSAP shows the highest PRR due to its

cell allocation algorithm compared to Orche-SB and ALICE which

may have slot conflict.

SSAP

Orche-SB

ALICE

D
e

la
y
 (

m
s
)

0

200

400

600

800

Packet generation rate (pkts/min)

0.667 1 2

(a) End-to-end delay

SSAP

Orche-SB

ALICEN
o

rm
a

liz
e

d
 L

if
e

ti
m

e

0

0.05

0.10

0.15

0.20

Packet generation rate (pkts/min)

0.667 1 2

(b) Lifetime

SSAP

Orche-SB

ALICE

D
u

ty
 c

y
c
le

 (
%

)

0

2

4

Packet generation rate (pkts/min)

0.667 1 2

(c) Duty cycle

SSAP

Orche-SB

ALICE

P
R

R

0.990

0.995

1.000

Packet generation rate (pkts/min)

0.667 1 2

(d) PRR

Figure 9: Evaluation on the impact of traffic demand. Red error

bars show standard deviation.

Impact of traffic demand. To evaluate the impact of different appli-

cation traffic, we measure the main performance metrics by varying

the arrival rate λ = 0.667, 1, and 2 packets/min. The delay require-

ment is given by 1000 ms and the length of Slotframe for Orche-SB

and ALICE is chosen by LSF = 21 which achieves the delay re-

quirement while maximizing the lifetime. SSAP also chooses the

same Slotframe length for fair comparison. As shown in Fig. 9(a),

all protocols guarantee the end-to-end delay requirements. However,

they clearly show different performances on the lifetime and duty

cycle. In particular, SSAP achieves the much longer lifetime by

exploiting heterogeneous access period over all nodes, while the

other protocols cannot maximize the lifetime due to the same op-

portunity of communication for the all nodes. This is demonstrated

in Fig. 9(c) which shows that SSAP and the other protocols have

almost the same average duty cycle (ALICE is a little higher due to

its link-based scheduling). By varying the arrival rates, SSAP still

achieves the better performances compared to those of Orche-SB

and ALICE, which means SSAP can support various IoT application

traffic patterns.

Impact of delay requirement. Since the design goal of SSAP

is to guarantee the delay requirement while maximizing the life-

time, we show that SSAP adapt to the different delay requirements.

Figs. 11 demonstrate the evaluation result of SSAP with various

delay requirements 600, 800, 1000, and 1200 ms where the length

of Slotframe is 7 and the arrival rate is chosen from 0.667, 1, and 2

packets/min. As shown in Fig. 11(a), for each of the delay require-

ment, SSAP properly adapts to that requirement by searching the

IPSN ’20, April 21-24, 2020, Sydney, Australia Jinhwan Jung, Daewoo Kim, Taeyoung Lee, Joohyun Kang, Namjo Ahn, Yung Yi

!!!!

5

4

3

2

1

7

6

12

11

10

9

8

13

A
cc

es
s

p
er

io
d
n

(a) R = 600 ms (b) R = 800 ms (c) R = 1000 ms (d) R = 1200 ms

Figure 10: Evaluation on heterogeneous access period by varying delay requirements.

λ=0.667

λ=1

λ=2

D
e

la
y
 (

m
s
)

0

600

800

1000

1200

Delay requirement (ms)

600 800 1000 1200

(a) End-to-end delay

λ=0.667

λ=1

λ=2N
o

rm
a

liz
e

d
 L

if
e

ti
m

e

0

0.1

0.2

Delay requirement (ms)

600 800 1000 1200

(b) Lifetime

λ=0.667

λ=1

λ=2

D
u

ty
 c

y
c
le

 (
%

)

0

2

4

Delay requirement (ms)

600 800 1000 1200

(c) Duty cycle

λ=0.667

λ=1

λ=2

P
R

R

0.9990

0.9995

1.0000

Delay requirement (ms)

600 800 1000 1200

(d) PRR

Figure 11: Evaluation on the impact of varying delay require-

ments. Red error bars show standard deviation.

optimal access period in a distributed manner. We also illustrate

the heterogeneous access period of each node in Fig. 10. While the

end-to-end delay requirement is tightly achieved, as the requirement

becomes loose, SSAP improves the network lifetime and the energy-

efficiency significantly as shown in Figs. 11(b) and 11(c), while the

PRR performance is high enough to support the mission-critical

applications (Fig. 11(d)).

Heterogeneous access period. With the same setting in the above

evaluation of varying delay requirements, we visualize how access

period is determined adaptively in different delay requirements.

Figs. 10 illustrate heterogeneous access period on each node with the

delay requirements from 600 to 1200 ms where λ = 1 packets/min

and the heterogeneous parameters are represented by different colors

as shown in the right-hand side of Fig. 10. As the delay requirement

becomes loose, SSAP finds the larger access period for each node to

maximize the network lifetime. Comparing the nodes from the small

subtree to the other nodes, they also have larger access period since it

is much easy to guarantee the delay requirement due to the short path

so as to maximize the lifetime. By combining both result from the

evaluation of varying the requirement and the heterogeneous access

period, it clearly is shown that SSAP improves the network lifetime

by adaptively finding the best access period over the network.

5.3 Evaluation on Testbed

To evaluate SSAP in a real testbed, we implement SSAP on the M3

nodes. As explained earlier, we choose IoT-LAB as the real testbed

and evaluate SSAP with Orche-SB and ALICE. We build the testbed

with the 50 M3 nodes and the RPL protocol with MRHOF (i.e., the

objective function that uses ETX and hop count as routing metrics)

is used to build the routing tree as shown in Fig. 7(b) where we set

TX power of each node to -17 dBm to build a multi-hop network.

Before evaluating the main performance metrics, we first evaluate

the feasibility of SSAP on real IoT devices. Since the parameter

search module requires optimization computation to update access

period over its child nodes, this computation should be done at the

IoT device within some reasonable time.

α = 3 α = 5 α = 7

C
o

m
p

u
ta

ti
o

n
 t
im

e
 (

m
s
)

0

20

40

60

Number of child

1 2 3 4 5 6

Figure 12: Computation time on M3 nodes from IoT-LAB. Stan-

dard deviation is omitted due to its negligible variance.

Computation complexity. As proposed in previous sections, the

parameter search algorithm of SSAP needs to update access pe-

riod using an analytic method in a distributed manner. To show the

feasibility of SSAP in low power IoT networks, we validate the

computation complexity of our update algorithm on the low power

M3 device with 32 MHz MCU. Fig. 12 shows the computation time

of a node to obtain the access period for all its child nodes. As the

number of child nodes increases, the computation time increases

for all α . However, they are smaller than 60 ms and for our choice

of α = 5, the computation time is short enough to be computed

on real devices. Furthermore, our previous evaluation shows that

about 20 iterations are enough to converge access period. Thus, we

claim that this computation overhead is negligible compared to the

improvement of the network lifetime through SSAP.

Performance evaluation on the real testbed. Figs. 13 demonstrate

the main performance metrics as the same as those of the simulations

comparing SSAP to the other protocols. With varying the length of

Slotframe which impacts highly on all of the performances (from

11 to 21), we let each node generates data packets with Poisson

rate λ = 1 packets/min. We assume that the delay requirement is

given by 1200 ms for all nodes. As shown in Fig. 13(a), SSAP

achieves the delay requirement since the maximum end-to-end delay

is small than 1200 ms except the case of Slotframe length is 21.

Distributed Slot Scheduling for QoS Guarantee over TSCH-based IoT Networks IPSN ’20, April 21-24, 2020, Sydney, Australia

SSAP

Orche-SB

ALICE

D
e

la
y
 (

m
s
)

0

500

1000

1500

Length of Slotframe (# of slots)

11 15 21

(a) End-to-end delay

SSAP

Orche-SB

ALICEN
o

rm
a

liz
e

d
 L

if
e

ti
m

e

0

0.1

0.2

Length of Slotframe (# of slots)

11 15 21

(b) Lifetime

SSAP

Orche-SB

ALICE

D
u

ty
 c

y
c
le

 (
%

)

0

2

4

6

Length of Slotframe (# of slots)

11 15 21

(c) Duty cycle

SSAP

Orche-SB

ALICE

P
R

R

0.85

0.90

0.95

1.00

Length of Slotframe (# of slots)

11 15 21

(d) PRR

Figure 13: Evaluation on the real testbed with varying the

length of Slotframe.

This is because considering the result of Orche-SB and ALICE,

it is impossible to achieve this requirement due to the topology

when the Slotframe length is too long (i.e., 21). In terms of the

lifetime and energy efficiency (i.e., radio duty cycle), similar to the

simulation results SSAP achieves the longest network lifetime and

the minimum average duty cycle compared to the others where the

normalized lifetime in Fig. 13(b) is obtained by 1 divided by the

value of the node’s duty cycle which has the largest value among

nodes. Fig. 13(d) shows the PRR performances of those protocols.

In the real testbed, not only the topology is more dense but also

link loss and interference are much severe compared to those of the

simulation, and thus they suffer from a lot of packet drops. However,

SSAP shows that the achieved reliability is still better than that of

the others due to its conflict-free scheduling. As a result, we claim

that under deployed environments SSAP maximizes the network

lifetime while it achieves the delay requirements; thus, SSAP can

support a lot of mission-critical IoT applications with minimizing

network maintenance cost.

6 CONCLUSION

This paper proposed SSAP which is a novel scheduling algorithm

for TSCH. SSAP achieved the QoS of expected latency while max-

imizing energy efficiency, quantified by the α-lifetime. In order to

develop a distributed protocol, we first introduced the tunable param-

eter which trade offs the energy efficiency and delay by controlling

the period of schedule activation, called access period. Using ac-

cess period, we decomposed the original scheduling problem into

ALOS cell scheduling and the parameter search, so that given QoS

requirement, SSAP can find the best schedule and access period in a

distributed manner.

In order to evaluate SSAP, we implemented SSAP in the Contiki

OS and performed extensive simulations and experiments on the

performance of the lifetime, end-to-end delay, and reliability (i.e.,

PRR). Compared to the state-of-the-art protocols, we showed that

SSAP satisfies the QoS requirement of delay while achieving at most

1.6 times longer lifetime, while the others cannot guarantee the QoS

or consume too much energy. Moreover, the complexity evaluation

and adaptivity to environmental changes of SSAP demonstrated the

practicality of SSAP when it is deployed in situ.

ACKNOWLEDGMENT

This work was supported by Institute of Information & communica-

tions Technology Planning & Evaluation (IITP) grant funded by the

Korea government(MSIT) (No.2016-0-00160,Versatile Network Sys-

tem Architecture for Multi-dimensional Diversity) and Institute of

Information & communications Technology Planning & Evaluation

(IITP) grant funded by the Korea government(MSIT) (No.2018-

0-00772,Development of an ultra-Low power(500uW) long range

radio for ultra-small IoT based on new Two-Tone OOK modulation

scheme). We would like to thank to the anonymous reviewers and

shepherd for the valuable comments.

A APPENDIX: PROOF OF THEOREM 4.1

Theorem 1 from [21] states that the distributed gradient descent

algorithm described in Algorithm 2 will converge to the globally

optimal point with sufficiently small step size, when the following

conditions holds for all node:

(1) The primal parameter x is bounded away from zero by posi-

tive constantsm and M :m ≤ x ≤ M wherem > 0.

(2) The gradient of primal parameter x with respect to the dual

parameter q exists and is bounded between zero and a negative

constant C1 : C1 <
∂x
∂q
≤ 0, ∀q.

(3) The utility function is twice continuously differentiable, strictly

concave and increasing in the range of the primal parameter.

We now adopt the above result and show that our algorithm also

converges to the optimal point by proving that the above conditions

are satisfied. Given a tree network T (V ,E), for an edge vp ∈ E, let

nvp (simply nv) be the primal parameter (access period), and qv be

the dual parameter (delay price) of a node v ∈ V . We now show the

conditions are satisfied for every node v ∈ V :

(1) The primal parameter is at least 1 since each node is assigned

at most 1 slot per Slotframe. The primal parameter is also less

than Rv which is the delay constraint. Thus, 1 ≤ nv ≤ Rv .

(2) While traditional NUM uses linear sum of primal parameters

as constraints, our problem considers the sum of non-linear

delay functions as a constraint. Hence, the second condition

is rewritten using the delay function : C1 <
∂dv (nv)
∂qk

≤ 0,

∀k ∈ V .

It is easy to see that nv and qk are independent if k is not in

the subtree Tv of v, so that the gradient
∂dv (nv)
∂qk

is 0 for all

such k. Hence, we only consider qk for k ∈ Tv , which is a

dual parameter of nodes k ∈ Tv . The gradient of the delay

dv (nv) with respect to qk can be expressed as follows:

∂dv

∂qk
=

1

4(1 − λvnv)((1 − λvnv)3
∂2Uα (Lp)

∂2nv
− λvQv)

Note that Uα (Lp) is used since the nv affects the parent’s

lifetime only, and the equation does not depends on the choice

of k. From the basic assumption, the delay of each node

should be less than the delay constraint. Thus, we have the

IPSN ’20, April 21-24, 2020, Sydney, Australia Jinhwan Jung, Daewoo Kim, Taeyoung Lee, Joohyun Kang, Namjo Ahn, Yung Yi

following bounds:

dv (nv) =
nv

2(1 − λvnv)
< Rv and 1 − λvnv >

1

2Rv

The second-order derivative of the objective function of the

parent node Uα (Lp) with respect to nv can be expressed as

follows:

∂2Uα (Lp)

∂2nv
= −

(
1∑

c ∈Cp
1
nc
+ λv

)−α+3
·

(
1

n3v

)

·
©­«
α

nv
+ 2λv +

∑
c ∈Cp,c,v

2

nc

ª®¬
Since each nv is bounded between strictly positive bounds:

1 ≤ nv ≤ Rv , it is easy to see that the second-order derivative

of theUα (Lp) is also bounded between some strictly negative

constants C2 and C3: C2 <
∂2Uα (Lp)

∂2nv
< C3 < 0. Then, we

have the following bound:

4R4v
C3
<
∂dv

∂qk
≤ 0

(3) It is easy to see that the utility function is increasing and twice

continuously differentiable from Eq. (1).

For the strict concavity, it is sufficient to prove that each

Uα (Lv) is strictly concave, then the objective function as

a summation of strictly concave functions is also strictly

concave. For each v, let Av =
∑
c ∈Cv

1
nc
+ λv , then we have

the following hessian matrix for each Uα (Lv):

Hv = −
(B/k)−α+1

(Av)−α+3
©­«
αдTд + 2λvDiaд(

1

n3
) +

∑
i ∈Cv

∑
j,i

hTi jhi j
ª®¬

where hi j =
[
0... 1ni ...0...

−1
nj
...0

]
, д is a vector whose i th

entry is 1
n2
i

, and Diag(1
n3) is a diagonal matrix whose (i, i)

th entry is 1
n3
i

. Diagonal matrix and each xT x with x , 0 is

positive definite, so that the hessian matrix is negative definite

as a negative summation of positive definite matrices, and

therefore Uα (Lv) is strictly concave.

REFERENCES
[1] 802.15.4e Task Group. IEEE Standard for Local and metropolitan area networks–

Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment
1: MAC sublayer. IEEE Std 802.15.4e, 2012.

[2] N. Accettura, M. R. Palattella, G. Boggia, L. A. Grieco, and M. Dohler. Decen-
tralized traffic aware scheduling for multi-hop low power lossy networks in the
internet of things. In Proc. of IEEE WoWMoM, 2013.

[3] I. Adan and J. Resing. Queueing theory. Eindhoven University of Technology
Eindhoven, 2002.

[4] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel, R. Pissard-Gibollet,
F. Saint-Marcel, G. Schreiner, J. Vandaele, et al. FIT IoT-LAB: A large scale open
experimental IoT testbed. In Proc. of IEEE WF-IoT, 2015.

[5] G. Daneels, B. Spinnewyn, S. Latré, and J. Famaey. ReSF: Recurrent Low-Latency
Scheduling in IEEE 802.15. 4e TSCH networks. Ad Hoc Networks, 69:100–114,
2018.

[6] M. Domingo-Prieto, T. Chang, X. Vilajosana, and T. Watteyne. Distributed pid-
based scheduling for 6tisch networks. IEEE Communications Letters, 20(5):1006–
1009, 2016.

[7] A. Dunkels, B. Grönvall, and T. Voigt. Contiki-a lightweight and flexible operating
system for tiny networked sensors. In Proc. of IEEE LCN, 2004.

[8] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne. Orchestra: Robust
mesh networks through autonomously scheduled TSCH. In Proc. of ACM SenSys,
2015.

[9] S. C. Ergen and P. Varaiya. TDMA scheduling algorithms for wireless sensor
networks. Wireless Networks, 16(4):985–997, 2010.

[10] X. Fafoutis, A. Elsts, G. Oikonomou, R. Piechocki, and I. Craddock. Adaptive
static scheduling in IEEE 802.15. 4 TSCH networks. In Proc. of IEEE WF-IoT,
2018.

[11] O. Gnawali. The minimum rank with hysteresis objective function. IETF
RFC6719, 2012.

[12] R. T. Hermeto, A. Gallais, and F. Theoleyre. Scheduling for IEEE802.15.4-TSCH
and slow channel hopping MAC in low power industrial wireless networks: A
survey. Computer Communications, 2017.

[13] I. Hosni and F. Théoleyre. Self-healing distributed scheduling for end-to-end delay
optimization in multihop wireless networks with 6TiSCh. Computer Communica-
tions, 110:103–119, 2017.

[14] O. D. Incel, A. Ghosh, B. Krishnamachari, and K. Chintalapudi. Fast data col-
lection in tree-based wireless sensor networks. IEEE Transactions on Mobile
Computing, 11(1):86–99, 2012.

[15] ISA. Wireless system for industrial automation: process control and related
applications. ANSI/ISA-100.11a-2011.

[16] S. Jeong, J. Paek, H.-S. Kim, and S. Bahk. Tesla: Traffic-aware elastic slotframe
adjustment in tsch networks. IEEE Access, 7:130468–130483, 2019.

[17] J. Jung, D. Kim, J. Hong, J. Kang, and Y. Yi. Parameterized Slot Scheduling
for Adaptive and Autonomous TSCH Networks. In Proc. of IEEE INFOCOM
Workshop on MiSeNet, 2018.

[18] S. Kim, H.-S. Kim, and C. Kim. ALICE: autonomous link-based cell scheduling
for TSCH. In Proc. of ACM/IEEE IPSN, 2019.

[19] R.-A. Koutsiamanis, G. Z. Papadopoulos, X. Fafoutis, J. M. Del Fiore, P. Thubert,
and N. Montavont. From best effort to deterministic packet delivery for wireless
industrial iot networks. IEEE Transactions on Industrial Informatics, 2018.

[20] LAN/MAN Standards Committee and others. IEEE Standard for Local and
metropolitan area networks-Part 15.4: Low-Rate Wireless Personal Area Networks
(LR-WPANs). IEEE Computer Society Approved, 2011.

[21] S. H. Low and D. E. Lapsley. Optimization flow control. i. basic algorithm and
convergence. IEEE/ACM Transactions on Networking, 7(6):861–874, 1999.

[22] J. Mo and J. Walrand. Fair end-to-end window-based congestion control.
IEEE/ACM Transactions on Networking, 8(5):556–567, 2000.

[23] A. Morell, X. Vilajosana, J. L. Vicario, and T. Watteyne. Label switching over
IEEE802. 15.4 e networks. Transactions on Emerging Telecommunications Tech-
nologies, 24(5):458–475, 2013.

[24] R. T. Najafabadi, M. Nabi, A. Basten, and K. Goossens. Hybrid Timeslot Design
for IEEE 802.15. 4 TSCH to Support Heterogeneous WSNs. In Proc. of IEEE
PIMRC. IEEE, 2018.

[25] M. Nobre, I. Silva, and L. A. Guedes. Routing and scheduling algorithms for
WirelessHARTNetworks: a survey. Sensors, 15(5):9703–9740, 2015.

[26] S. Oh, D. Hwang, K.-H. Kim, and K. Kim. Escalator: An Autonomous Scheduling
Scheme for Convergecast in TSCH. Sensors, 18(4):1209, 2018.

[27] M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco, and G. Boggia. Traffic
aware scheduling algorithm for reliable low-power multi-hop IEEE 802.15. 4e
networks. In Proc. of IEEE PIMRC, 2012.

[28] S. Rekik, N. Baccour, M. Jmaiel, K. Drira, and L. A. Grieco. Autonomous and
traffic-aware scheduling for TSCH networks. Computer Networks, 135:201–212,
2018.

[29] L. Shi and A. O. Fapojuwo. Tdma scheduling with optimized energy efficiency
and minimum delay in clustered wireless sensor networks. IEEE Transactions on
Mobile Computing, 9(7):927–940, 2010.

[30] J. Song, S. Han, A. Mok, D. Chen, M. Lucas, M. Nixon, and W. Pratt. Wire-
lessHART: Applying wireless technology in real-time industrial process control.
In Proc. of IEEE RTAS, 2008.

[31] R. Soua, P. Minet, and E. Livolant. MODESA: an optimized multichannel slot
assignment for raw data convergecast in wireless sensor networks. In Proc. of
IEEE IPCCC, 2012.

[32] R. Soua, P. Minet, and E. Livolant. Wave: a distributed scheduling algorithm
for convergecast in IEEE 802.15.4e TSCH networks. Transactions on Emerging
Telecommunications Technologies, 27(4):557–575, 2016.

[33] X. Wang, D. Wang, H. Zhuang, and S. D. Morgera. Fair energy-efficient resource
allocation in wireless sensor networks over fading tdma channels. IEEE Journal
on Selected Areas in Communications, 28(7):1063–1072, 2010.

[34] Y. Wu, J. A. Stankovic, T. He, and S. Lin. Realistic and efficient multi-channel
communications in wireless sensor networks. In Proc. of IEEE INFOCOM, 2008.

[35] P. Zand, A. Dilo, and P. Havinga. D-MSR: A distributed network management
scheme for real-time monitoring and process control applications in wireless
industrial automation. Sensors, 13(7):8239–8284, 2013.

[36] Y. Zhang, C. Chen, and S. Zhu. An adaptive distributed scheduling algorithm for
ieee 802.15. 4e tsch protocol. In Proc. of IEEE ISAS, 2019.

