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Abstract—Game-theoretic modeling and equilibrium analysis
have provided valuable insights into the design of robust local
control rules for the individual agents in multi-agent systems,
e.g., Internet congestion control, road transportation networks,
etc. In this paper, we introduce a non-cooperative MAC (Medium
Access Control) game for wireless networks and propose new
fully-distributed CSMA (Carrier Sense Multiple Access) learning
algorithms that are probably optimal in the sense that their long-
term throughputs converge to the optimal solution of a utility
maximization problem over the maximum throughput region.
The most significant part of our approach lies in introducing
a novel cost function in agents’ utilities so that the proposed
game admits an ordinal potential function with (asymptotically)
no price-of-anarchy. The game formulation naturally leads to
known game-based learning rules to find a Nash equilibrium,
but they are computationally inefficient and often require global
information. Towards our goal of fully-distributed operation, we
propose new fully-distributed learning algorithms by utilizing a
unique property of CSMA that enables each link to estimate
its temporary link throughput without message passing for the
applied CSMA parameters. The proposed algorithms can be
thought as ‘stochastic approximations’ to the standard learning
rules, which is a new feature in our work, not prevalent in
other traditional game-theoretic approaches. We show that they
converge to a Nash equilibrium, which is a utility-optimal
point, numerically evaluate their performance to support our
theoretical findings and further examine various features such
as convergence speed and its tradeoff with efficiency.

I. INTRODUCTION

In many engineering systems, we often observe trade-offs
between efficiency and complexity, where optimal algorithms
require heavy computational challenges or extensive mes-
sage passing, but light-weight approximate algorithms incur
efficiency degradation. MAC (Medium Access Control) in
wireless networks is no exception. The seminal work is
done by Tassiulas and Ephremides [1], referred to as Max-
Weight scheduling, which is centralized and computationally
intractable (for a large-scale network). The high complexity
in Max-Weight stems from the fact that an NP-hard problem
(maximum weight independent set problem) has to be solved
repeatedly over time. Since then, various subsequent papers
based on many principles, e.g., random access [2], [3], pick-
and-compare [4]–[7], and maximal/greedy [8]–[10], have been
published, and most of them more or less show that the
tradeoff between efficiency and complexity indeed exists, e.g.,
see [11], [12] for surveys.
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In this paper, we aim at developing fully-distributed MAC
algorithms without message passing that are utility-optimal
over the maximum throughput region (as achieved by Max-
Weight). To that end, we adopt CSMA as a base-line MAC,
where we smartly update CSMA’s parameters, so that the long-
term throughput over links is the optimal solution of a utility
maximization problem. We take a game-theoretic learning
framework—by formulating a non-cooperative CSMA game.
Game theory has been emerged as a powerful tool for the
design and distributed control of multi-agent systems, e.g.,
[13], where agents just optimize their local objectives and react
to limited network information, yet their local decisions often
result in system-wide efficient behaviors. This paper inherits
such a philosophy of using a game for distributed optimization.
To achieve our goal, we design a novel cost function for each
link, characterize the existence, uniqueness, efficiency of NE
(Nash Equilibrium), and propose dynamic algorithms (strategy
evolutions) to achieve the NE in a fully-distributed manner
without any message passing. In the game, each link uses its
own CSMA parameter as a strategy, and the payoff function
is designed to reflect both (i) the net-utility from the network,
e.g., some function of the stationary throughput, and (ii) the
cost measured by the harmful effects on other links. We prove
that the game is an ordinal potential game and has the unique
(non-trivial) NE which is equivalent to the socially optimal
point (i.e., no price-of-anarchy).

A game formulation naturally leads to popular learning
dynamics in classical game theory, but it turns out that they
are computationally inefficient and require global information
in our game. In particular, they are interactive: each player’s
learning process correlates and affects what has to be learned
by every other player over time. To resolve this issue, we
exploit a feature of CSMA that temporary link throughput
is naturally locally-observable without message passing, and
design three learning rules, called SA-BRD (Stochastically
Approximated-Best Response Dynamics), SA-JD (SA-Jacobi
Dynamics) and SA-GD (SA-Gradient Dynamics), that update
the link access intensities in a fully-distributed manner: each
player can adjust its behavior only in response to its own
realized throughput without knowledge of the game structure,
without observing the behaviors and/or throughputs of the
others. We prove that SA-BRD, SA-JD and SA-GD con-
verge to the unique non-trivial NE. They can be thought
as ‘stochastic approximations’ to the standard learning rules,
which is a new feature, not popular in other traditional game-
theoretic approaches. It has been shown in Hart and Mas-
Colell [14] that for a broad class of games, there is no978-1-4799-3360-0/14/$31.00 c© 2014 IEEE
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general algorithm which allows the players’ period-by-period
behavior (even not fully distributed) to converge to a NE. Also,
there exists a distributed game-based learning in [15], which,
however, provides only probabilistic convergence guarantee
under highly strict conditions such as finiteness of a game.

To connect CSMA (with utility maximization being a goal
for saturated traffic) to the angles from machine learning or
statistical physics, it can be regarded as a problem of finding
the parameters of the hard-core graphical model1 [16] (in a
distributed manner) leading to the marginal distribution (or
link throughput in networking) that is the optimal solution of
a utility maximization problem. The hard-core model there
corresponds to the interference graph in multi-hop wireless
network and the parameters are the link access intensities
in CSMA. Technical challenges lie in complex inter-plays
between the parameter-update and the underlying dynamics of
the hard-core graphical models, where non-trivial time-scale
issues also exist, e.g., the parameter-update before the under-
lying Markov chain for a given parameter reaches stationary
regime. The proposed dynamics in this paper can be also
interpreted as variants of the contrastive divergence learning
[17] in hard-core graphical models, which is of intellectually
independent interest in other fields such as machine learning
and statistical physics.

Recently, there have been works that fully-distributed MAC
algorithms based on CSMA (Carrier Sense Multiple Access)
can achieve optimality in both throughput and utility, e.g.,
see [18]–[22]. Our work takes a different angle (i.e., game-
based one) toward fully-distributed algorithms, which reverse-
engineer existing algorithms as well as propose new types of
algorithms. Also, as summarized in Section II, our paper also
differs from other MAC game papers in that our work leads
to fully-distributed utility-optimal learning dynamics over the
maximum throughput region, whereas most of other papers
are based on the smaller throughput region.

II. RELATED WORK

D1. Single-hop ALOHA-based MAC: There exist game-
theoretic studies on ALOHA or Slotted-ALOHA with selfish
users [23]–[28]. To summarize some of those papers, the
authors in [23] considered a multipacket reception model for
selfish users and analyzed a Nash equilibrium and its stability
region with the assumption of perfect information. The case
with partial information has been studied in [24]. In [25], non-
cooperative two-player Aloha game was shown to have two
different Nash equilibria though only one was locally asymp-
totically stable. The authors in [27], [28] studied the impact
of channel-state information. All these papers considered a
single-hop wireless network, e.g., WLAN (Wireless LAN).
D2. Single-hop 802.11 or CSMA/CA: In [29], it has been
studied how selfish users can cheat those who obey the
standard CSMA/CA. The authors in [30] abstract 802.11 DCF
by focusing on 802.11’s average behavior and connecting its
window-based access and backoff to transmission probability.

1This corresponds to a graphical model that neighboring nodes cannot be
active simultaneously.

Then, the stability of 802.11 has been studied when heteroge-
neous selfish users exist, where each user dynamically changes
its contention window size based on its disutility in terms of
contention degree.
D3. Multi-hop random access: The authors in [31] reverse-
engineered exponential back-off based contention resolution
mechanism which can be modeled by a non-cooperative game
with a player’s strategy being access probability (i.e., Aloha-
like MAC). They also showed that the resulting NE is not
generally socially optimal. This motivates the work [32] which
forward-engineer utility-optimal contention resolution algo-
rithms using a standard optimization decomposition approach.
The authors in [33], [34] take a similar medium access model
based on access probability and study how cost function in
each player’s payoff function should be designed to achieve
a good NE and propose a dynamic access probability update
rule converging to the NE. The authors in [35], [36] propose
distributed MAC algorithms which have provable convergence,
optimality, and robustness under a wider range of utility
functions with single message passing for each node in [35]
for general topologies, and without message passing for fully
interfered topologies in [36].
D4. Achieving optimality based on CSMA: As mentioned in
Section I, CSMA has recently been studied from an opti-
mization based framework to achieve optimality in throughput
and/or fairness, e.g., see [18]–[22], [37], [38]. The main intu-
ition underlying these results is that links dynamically adjust
their CSMA parameters, backoff and channel holding times,
using local information such as queue-length so that they solve
a certain network-wide optimization problem for the desired
high performance. These analytical work has been transferred
to practical implementations [39]–[41]. This research has been
regarded as an exciting progress to achieve both simplicity and
optimality in the area of wireless cross-layer design.
Major difference from prior work. Our work differs from D1
and D2 in that a multi-hop wireless network is considered,
which seems to generate more challenging scenarios than
a single-hop case. Our work also enhances the research in
D3 in the sense that (i) we propose a game whose NE is
optimal over the maximum throughput region (throughput
region achieved by Max-Weight), whereas the studies in D3
are utility-optimal over a throughput region from Slotted-
Aloha (a much smaller region than the maximum throughput
region), (ii) their dynamic update algorithms require message
passing. CSMA’s utility-optimality has been studied by the
researches in D4 mainly from an optimization-perspective,
but our work starts from a game, followed by the resulting
NE’s efficiency (asymptotically no PoA) and proposes diverse
dynamic algorithms not revealed by the work in D4.

III. MODEL, OBJECTIVE, AND CHALLENGES

A. System Model
Network, interference, and traffic. In a wireless network, links
share the common wireless medium where they may interfere
in their transmissions. As a popular model for such wireless
interference networks, a network topology can be represented
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as an undirected graph G = (V,E), called interference graph,
where n links correspond to vertices V , i.e., |V | = n, and
undirected edges E are generated among interfering links. In
other words, we assume that the interference is symmetric,
captured by undirected edges in the graph, i.e., (i, j) ∈ E if
and only if links i and j interfere with each other. We are
interested in single-hop link-level traffic2, and assume that the
network is saturated, i.e., each link has infinite backlog to
transmit.

Schedule and throughput region. We consider a continuous
time framework, where our primary interest is to track which
links transmit over time. Let σi(t) ∈ {0, 1} denote whether
link i is transmitting at time t or not, where σi(t) = 1 means
that the transmission at link i is active (i.e., transmitting) at
time t and 0 otherwise. We also denote by σ(t) = [σi(t)]i∈V a
schedule for links at time t. A scheduling algorithm is regarded
as a policy that chooses a sequence of schedules {σ(t)}∞t=0

over time. Since interfering links cannot successfully transmit
packets simultaneously, a schedule σ is called feasible (i.e.,
no collision) unless there exists (i, j) ∈ E such that both σi
and σj are 1. Thus, the set of all feasible schedules I(G) is
defined as:

I(G) , {σ ∈ {0, 1}n : σi + σj ≤ 1,∀(i, j) ∈ E}.

We now define the maximum throughput region (or simply
throughput region) Λ of a given network, which is the convex
hull of I(G), i.e.,

Λ ,

{ ∑
ρ∈I(G)

αρρ :
∑

ρ∈I(G)

αρ = 1, αρ ≥ 0,∀ρ ∈ I(G)

}
.

The intuition behind this notion of throughput region comes
from the fact that any scheduling algorithm has to choose a
schedule from I(G) at each time and hence the time average
of the service rate in each link induced by any scheduling
algorithm must belong to Λ.

CSMA (Carrier Sense Multiple Access). As mentioned in
Section I, our interest lies in simple, fully-distributed CSMA
scheduling algorithms to avoid interferences efficiently in
wireless networks. Under a CSMA algorithm, prior to trying
to transmit a packet, links first check whether the medium
is busy or idle, and then transmit the packet only when the
medium is sensed idle, i.e., no interfering link is transmitting.
To control the aggressiveness of such medium access, each
link maintains a backoff timer, which is reset to a random
value when it expires. The timer runs only when the medium
is idle, and stops otherwise. With the backoff timer, links try
to avoid collisions by the following procedure:
• Each link does not start transmission immediately when

the medium is sensed idle, but keeps silent until its
backoff time expires.

• After a link grabs the channel (or medium), the link holds
the channel for some duration, called the holding time.

2However, our analysis of this paper can be readily extended to multi-
hop flows if a classical combination of back-pressure routing and source
congestion control [12] is inserted to our analysis.
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Fig. 1. (a) 3-link interference graph, where links 1 and 3 do not interfere with
each other, but interfere only with link 2. (b) The resulting CSMA Markov
process for fixed intensities, where for example the state (1, 0, 1) means that
links 1 and 3 are active and link 2 is inactive.

We assume that backoff and holding times of link i follow
exponential distributions with means 1/bi and hi, respectively,
for some positive real numbers bi and hi. Then, it is not hard
to see that a CSMA algorithm induces a sequence of schedules
{σ(t)}∞t=0, which is a time-reversible Markov process. To
illustrate, consider a simple three-link interference graph and
its resulting Markov process in Fig. 1.

For fixed CSMA parameters b = [bi]i∈V and h = [hi]i∈V ,
using the time-reversibility of Markov process {σ(t)}∞t=0, its
stationary distribution πb,h = [πb,hσ ]σ∈I(G) can be character-
ized as follows:

πb,hσ =

∏
i∈V (bihi)

σi∑
σ′∈I(G)

∏
i∈V (bihi)σ

′
i

. (1)

Namely, the stationary distribution of a schedule depends only
on the product of b and h of links. For simple presentation,
we let ri = log(bihi) and r = [ri]i∈V , and call ri the intensity
of link i, intuitively meaning the transmission aggressiveness
of the link. Hence, we also use πr instead of πb,h.

Given the links’ fixed intensities r, the ergodicity of the
Markov process implies that the marginal probability si(r)
that link i is scheduled under the stationary distribution
πr becomes the link i’s long-term (average) throughput or
service rate, i.e., limt→∞

1
t

∫ t
0
σi(s) ds. Furthermore, using the

reversibility of the Markov process, the marginal probability
can be characterized as:

si(r) = Eπr [σi] =
∑

σ∈I(G):σi=1

πrσ

=

∑
σ∈I(G)|σi=1 exp(

∑
i∈V σiri)∑

σ′∈I(G) exp(
∑
i∈V σ

′
iri)

. (2)

B. Problem: Utility Maximization

We aim at developing a CSMA algorithm that controls the
intensity of each link so as to make the long-term service rate
close to some fairness point of the boundary of Λ. Specifically,
each link i adaptively changes its intensity ri (i.e., CSMA’s
backoff and holding time parameters bi and hi) over time, so
that the long-term service rates over links form a solution of
the following utility maximization problem:

(OPT) max
λ∈Λ

∑
i∈V

Ui(λi), (3)

where λ∗ denotes the solution of the maximization. In the
above, each link i has a concave, increasing, and (twice)
differentiable utility function, Ui : [0, 1]→ R, where its value
represents the utility when rate λi ∈ [0, 1] is allocated at link
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i. As is well-known, the various forms of utility functions
enforce different concepts of fairness, e.g., famous α-fairness.

To achieve the desired utility maximization using a CSMA
algorithm, the core question is how each link i chooses
transmission intensity ri so that si(r) is the solution of (3).
To this end, we take a game-theoretic approach, where a smart
design of payoff (also called net-utility and price) functions
for links is necessary to have the desired property such that
the (Nash) equilibrium of the game corresponds to the solution
of (3). Under such a game design, we will consider various
dynamic learning algorithms that provably converge to the
equilibrium, where major technical challenges for proving the
convergence lie in handling a non-trivial coupling between
CSMA Markov process and CSMA parameter updates.

IV. GAME DESIGN AND EQUILIBRIUM ANALYSIS

A. O-CSMA Game: oCSMA(β)

We first describe our non-cooperative game, denoted by
oCSMA(β), which is parameterized by β, by presenting its
components. We then explain the rationale behind our game
design.

oCSMA(β)

(i) Players. Each link i ∈ V (i.e., a node in the interference
graph G(V,E)) acts as a player.

(ii) Strategy. Each player i chooses an intensity ri ∈
(−∞,∞) as its own strategy, which determines how
aggressively i accesses the medium. We use the con-
ventional notation that the strategy vector for all links
except i is r−i := (r1, r2, · · · , ri−1, ri+1, · · · , rn) and
write a strategy profile r = (ri, r−i).

(iii) Payoff function. The payoff function Φi(ri, r−i) of
player i is designed to be utility Ui subtracted by an
incurring price Ci, i.e.,

Φi(ri, r−i) = Ui(si(r))− 1

β
Ci(ri, r−i),

where
Ci(ri, r−i) =

∫ ri

−∞
xs′i(x, r−i)dx. (4)

Note that a payoff of player i is determined by how aggres-
sively other links access the medium as well as how itself does.
The parameter β quantifies ‘price level’ in the players’ payoffs,
and we realize that it balances the tradeoff between the quality
(i.e., price-of-anarchy, see Section IV-C) of equilibria in the
game and the convergence speed to the equilibria under the
learning dynamics (see Section V).

B. Role of Price Function

To have nice properties of our game, e.g., good equilibria or
provable transfer to fully-distributed dynamics (converging to
a good equilibrium), the choice of price function is of critical
importance. This subsection is devoted to explaining how such

nice properties can be obtained from our price function (4)
which has two following design features P1 and P2.

P1. Appropriate measure of link’s contention: We smartly
choose a price function, so that it appropriately measures
each link’s contention impact on other links’ throughput. This
choice differs from other price function choices, e.g., one in
Aloha systems, which is the key to probably have almost
no price-of-anarchy (see Section IV-C). Specifically, a simple
algebra gives us the following expression of our price function:

Ci(r) = si(ri, r−i) ·
∫ ri

−∞
x
s′i(x, r−i)

si(ri, r−i)
dx.

To interpret the above price design, let Ri ∈ [−∞, ri] be a
continuous random variable with the density fRi(·):

fRi(x) =
1

si(ri, r−i)

∂si(x, r−i)

∂x
.

Then, our price function can be regarded as the product of the
service rate and Ri’s expectation:

Ci(r) = si(ri, r−i) · E[Ri]. (5)

In other words, our design of price function considers the
relative increasing speed of the service rate in the interval
(−∞, ri).
Remark 1 A popular choice of price function is Ci(r) =
risi(ri, r−i). The intuition behind such a choice is that the
price to be paid by a link’s access intensity is proportional to
the aggressiveness in media usage multiplied by its achieved
gain (i.e., throughput). This type of chice has already been
made in other works, e.g., [34] which studies Aloha-based
MAC. However, it is unclear that this price function provides
a provable framework for no price-of-anarchy.

P2. Indirect coupling of players’ strategies: Our price func-
tion also leads to a form that is a function of self-strategy
and its marginal distribution of the given strategy vector, not
the individual strategy values of others. This feature enables
us to develop a fully-distributed dynamics that works based
only on throughput measurements (see Section V). To explain
this in details, we first re-express the price function to better
understand how it is structured in terms of the local strategy
and other players’ strategies. The price function can be re-
expressed as:

Ci(ri, r−i) =

∫ ri

−∞
xs′i(x, r−i)dx

=

[
xsi(x, r−i)

]ri
−∞
−
∫ ri

−∞
si(x, r−i)dx

= risi(r) + ln
(
1− si(r)

)
, (6)

where for the second term we use: first,

si(x, r−i) =

∑
σ∈I(G):σi=1 exp

(∑
j∈V rjσj

)∑
σ∈I(G) exp

(∑
j∈V rjσj

)
=

∑
σ∈I(G):σi=1 exp

(∑
j∈V \{i} rjσj

)
exp(x)∑

σ∈I(G) exp
(∑

j∈V \{i} rjσj
)

exp(xσi)

=
B exp(x)

A+B exp(x)
,
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where

A ≡
∑

σ∈I(G)|σi=0

exp(
∑

j∈V \{i}

rjσj),

B ≡
∑

σ∈I(G)|σi=1

exp(
∑

j∈V \{i}

rjσj),

and second,∫ ri

−∞
si(x, r−i)dx =

∫ ri

−∞

B exp(x)

A+B exp(x)

= ln
A+B exp(ri)

A
= − ln

(
1− si(r)

)
.

From (6), the payoff function reads:

Φi(r) = Ui(si(r))− 1

β

(
risi(r) + ln

(
1− si(r)

))
.

It is important to see that the payoff function depends only
on the local strategy ri and local service rate si(ri, r−i), not
directly on the individual strategies of other players. This
indirect coupling, which is a unique feature in our game,
is highly convenient to develop a fully-distributed dynamic
algorithm, because si(·) can be measured in the midst of
playing a player’s own strategy, thus not requiring message
passing.

C. Equilibrium Analysis: Existence, Uniqueness and Price-of-
Anarchy

We now analyze the equilibrium of oCSMA(β) using the
popular notion of Nash equilibrium, whose definition is pre-
sented as follows:
Definition 1 A strategy profile rNE is a Nash equilibrium (NE)
if

Φi(r
NE
i , rNE

−i) ≥ Φi(ri, r
NE
−i), ∀ri ∈ R,∀i ∈ V.

Furthermore, we say that a NE rNE (if exists) in the game
is non-trivial, if each player i’s service rate at equilibrium
si(r

NE) is positive for all players i ∈ V, and trivial otherwise.
We now present our main results on the equilibrium analysis
in the following theorem.
Theorem 1 (Uniqueness and no PoA) In the oCSMA(β), for
any β > 0,

(i) Existence and uniqueness. There exists a unique non-
trivial NE rNE.

(ii) Price-of-anarchy. Furthermore, at the non-trivial NE rNE,∑
i∈V

Ui

(
si(r

NE)
)
≥
∑
i∈V

Ui

(
si(r

∗)
)
− log |I(G)|

β
, (7)

where r∗ represents a strategy profile such that the
service rate vector [si(r

∗)]i∈V is the solution of the
optimization problem in (3), i.e., [si(r

∗)]i∈V = λ∗.
Theorem 1 implies that there is almost no PoA (Price-of-

Anarchy) in our game, i.e., the aggregate utility at the unique
non-trivial NE can be arbitrarily close to the social optimum
by choosing β sufficiently large. Namely, PoA can become
arbitrarily small.

Proof: (i) Existence and uniqueness. We first prove the
existence and the uniqueness of non-trivial NE using a po-
tential game approach. Consider the following function P (r)
on the space R+ = {r|si(r) > 0, for all i ∈ V } (the set of
strategies producing “non-trivial” service rates), defined by:

P (r) , − sup
λ∈[0,1]n,µ∈P

L(λ,µ;
r

β
)

where P is the set of all probability measures over the set of
all feasible schedules I(G), and

L(λ,µ;
r

β
) ,

∑
i∈V

Ui(λi)−
1

β

∑
σ∈I(G)

µσ logµσ

+
∑
i∈V

ri
β

( ∑
σ∈I(G)

µσσi − λi

)
.

It is easy to check that P (r) is strictly concave in r, since P (·)
is the infimum of −L(·) which is a family of affine functions
in r. We now show that oCSMA(β) is an ordinal potential
game [42] with the potential function P (r), i.e., sgn∂Φi(r)

∂ri
=

sgn∂P (r)
∂ri

, for all i ∈ V. To show this, we first have:

∂Φi(r)

∂ri
=

∂

∂ri

(
Ui(si(r))− 1

β

∫ ri

−∞
xs′i(x, r−i)dx

)
=

∂si(r)

∂ri

(
U ′i(si(r))− ri

β

)
= si(r)

(
1− si(r)

)(
U ′i(si(r))− ri

β

)
, (8)

where the last equality comes from a simple calculation:
∂si(ri, r−i)

∂ri
= si(ri, r−i)

(
1− si(ri, r−i)

)
, (9)

and second:
∂P (r)

∂ri
=

1

β

(
U ′−1
i (ri/β)− si(r)

)
.

Thus on the space {r|si(r) > 0, for all i ∈ V }, sgn∂Φi(r)
∂ri

=

sgn∂P (r)
∂ri

. From the standard results in potential game theory
and strict concavity of P (·), the solution that maximizes P (·)
is a NE rNE, where each player’s strategy is a best response
to the others’ strategies at NE, and is non-trivial and unique.
(ii) Price-of-anarchy. Consider an approximated problem A-
OPT of OPT, given by:

(A-OPT) max
λ∈[0,1]n,µ∈P

∑
i∈V

Ui(λi)−
1

β

∑
σ∈I(G)

µσ logµσ

subject to λi ≤
∑

σ∈I(G)

µσσi, ∀i ∈ V. (10)

Since the objective function is concave and the entropy follows
−
∑
σ∈I(G) µσ logµσ ≤ log |I(G)|, A-OPT problem has a

unique solution (λo,µo) and the solution λo satisfies that∑
i∈V

Ui(λ
o
i ) ≥ max

λ∈Λ

∑
i∈V

Ui(λi)−
log |I(G)|

β
. (11)

We now consider the Lagrangian L′ of A-OPT with dual
variables k = [ki]i∈V :

L′(λ,µ;k) =
∑
i∈V

Ui(λi)−
1

β

∑
σ∈I(G)

µσ logµσ
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+
∑
i∈V

ki(
∑

σ∈I(G)

µσσi − λi)

=
1

β

∑
i∈V

βki · Eµ[σi]−
∑

σ∈I(G)

µσ logµσ


+
∑
i∈V

(Ui(λi)− kiλi) ,

where Eµ[·] denotes the expectation for distribution µ. The
solution of A-OPT is the minimum point of the dual function,
which is given by

D(k) = sup
λ∈[0,1]n,µ

L′(λ,µ;k),

where L′(λ,µ; ·) is maximized when µoσ = πrσ with r = βk
(element-wise), and λoi = U ′−1

i (ki). Let ro be the strategy
vector such that ro = βko, where ko is the solution that
minimizes D(k), thus

si(r
o) = U ′−1

i (roi /β) = λoi for all i ∈ V. (12)

This completes the proof, because the strategy vector rNE

maximizing the potential function P (r) coincides with the
strategy vector ro = βko that minimizes D(k), and thus (7)
holds from (11) and (12).

V. DISTRIBUTED LEARNING DYNAMICS

A. Challenges and Approaches

In Section IV, we show that our game has desirable equilib-
rium properties, such as uniqueness and (asymptotically) no
price-of-anarchy (thus asymptotic utility optimality). We now
aim at developing dynamic learning algorithms that operate
in a fully-distributed manner, yet converge to the unique
non-trivial equilibrium. By “fully-distributed”, we mean that
users (or players) update their strategies without any message
passing among them, relying only on pure local information
and local observations.

In achieving our goal, major challenges as well as our
approaches to overcome them are summarized in what follows:
• Hardness of convergence to NE. It has been known that it

is generally hard for a fully-distributed algorithm to con-
verge to a NE. As discussed in [14] that for a broad class
of games, there exists no generalized algorithm which
operates even in a “partially”-distributed manner (i.e.,
based on observation of other players’ payoff, and thus
with message passing), converging to a NE. We overcome
this challenge by using the unique property of our game
that the payoff function depends only on the local strategy
and the marginal distribution (i.e., service rates for a given
strategy profile), not directly on other players’ strategies.
The advantage of this indirect coupling allows each
user to exploit the locally-observed service rate rather
than other players’ strategies or experienced utilities (as
done in classical fully-distributed game-based learning)
to update its strategy over time.

• Long convergence time for classical dynamics. In updat-
ing strategies over time, the locally-observed service rate
is not the actual marginal distribution, because after a

strategy (i.e., an intensity) is played, it takes long time to
reach the stationary regime. In other words, the observed
service rates may be far from the ‘stationary’ service
rates. This time-scale issue incurs additional challenges
of extremely long convergence times for classical game
dynamics, because a certain amount of time (formally
called mixing time) to reach the stationary regime is re-
quired for each strategy update, and for convergence, long
strategy update cycles are necessary. This challenge pre-
vents us from applying the classical dynamics, e.g., best
response dynamics. We tackle this challenge by adopt-
ing a special learning dynamics, called stochastically-
approximated dynamics that utilize the time-aggregated
service rates in the strategy updates.

B. Three Stochastically-Approximated Dynamics

We provide three stochastically-approximated (SA) dynamic
algorithms, all of which provably converge to the unique non-
trivial NE: (i) SA-BRD (SA-Best Response Dynamic), (ii)
SA-JD (SA-Jacobi Dynamic), and (iii) SA-GD (SA-Gradient
Dynamic). In all three dynamics, time is divided into discrete
frames t = 0, 1, . . . , where the frame duration is fixed by, say
the time to transmit MAC packets of a fixed size. We first let
s̄i(t) and ŝi(t) be the aggregate and instantaneous service rate
of player i until and at frame t, respectively, i.e.,

s̄i(t) =
1

t

t−1∑
n=0

ŝi(n),

where ŝi(t) denotes the number of transmitted packets at
link (or player) i over frame t. Hence, s̄i(t) can be locally
maintained.

(i) SA-BRD. A simple learning dynamic is the best response
that each player chooses the best strategy given strategy vector
(at the previous frame) of other players:

ri(t+ 1) = BRi(r−i(t)) := arg max
ri∈R

Φi(ri, r−i(t)),

which leads to a fixed point of following function:

ri(t+ 1) = βU ′i

(
si(ri(t+ 1), r−i(t))

)
. (13)

As we mentioned earlier, measuring the ‘stationary’ service
rate si(ri(t+ 1), r−i(t)) directly might incur the long conver-
gence issue (i.e., it takes the mixing time of the underlying
CSMA Markov chain). Hence, we study a variant, called SA-
BRD, which replaces si(ri(t + 1), r−i(t)) by the aggregate
service rate s̄i(t):

ri(t+ 1) =

[
βU ′i

(
s̄i(t)

)]rmax

rmin

.

For the above and following algorithms, where [·]ba ≡
max(b,min(a, ·)), we assume that rmin and rmax are the
parameters such that rNE is in [rmin, rmax]n. The explicit values
of rmin and rmax can be also computable [38].
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(ii) SA-JD. In the standard Jacobi dynamic, each player grad-
ually adjusts its current strategy towards the best response
strategy:

ri(t+ 1) = ri(t) + α

(
BRi(r−i(t))− ri(t)

)
,

where α ∈ (0, 1] is called a smoothing parameter3. Similarly as
SA-BRD, we suggest the following learning dynamics, called
SA-JD:

ri(t+ 1) =

[
ri(t) + α

(
βU ′i

(
s̄i(t)

)
− ri(t)

)]rmax

rmin

,

where α ∈ (0, 1] captures how aggressively the dynamic
follows the best response dynamic, where α = 1 corresponds
to SA-BRD.

(iii) SA-GD. The third dynamic is the gradient play [44],
which can be viewed as a “better response” dynamic. In the
gradient dynamic, each player gradually updates its intensity
in a gradient direction:

ri(t+ 1) = ri(t) + α · ∇Φi(ri(t)),

where we consider a smoothing parameter α ∈ (0, 1] and

∇Φi(r) =
∂Φi(r)

∂ri
=
∂si(r)

∂ri

(
β

si(r)
− ri

)
.

A nice economic interpretation of the gradient dynamic is
that if the marginal utility exceeds the marginal cost, i.e.,
∇Φi(r) > 0, link i’s intensity is increased and vice versa.
Similarly as before, we design the following variant, called
SA-GD:

ri(t+ 1) =

[
ri(t) + α

∂si(r(t))

∂ri(t)

(
βU ′i

(
s̄i(t)

)
− ri(t)

)]rmax

rmin

.

The following theorem states that all of three dynamics
converge to the unique non-trivial NE, which is in turn
asymptotically equal to the socially optimum, as discussed in
Section IV-C.
Theorem 2 (Convergence) In all of SA-BRD, SA-JD, and
SA-GD, r(t) converges to the unique non-trivial NE rNE in
the sense that

lim
t→∞

r(t) = rNE, component-wise, almost surely.

The proof of Theorem 2 is presented in Appendix. We
remark that the convergence of SA-BRD has been already
studied in [37], but from a different perspective. Specifically,
the authors propose a steepest ascent algorithm which turns
out to be SA-BRD, whereas we derive it via a game-theoretic
approach. Therefore, we provide the proof only for SA-JD and

3Jacobi dynamics generally achieves a smoother move than best response
does in case of non-supermodular games which has unique equlibrium. The
small smoothing parameter plays the role of compensating for the instability
of the best response dynamics, see [43].

SA-GD. The additional technical challenge dealing with later
two dynamics (not existing for SA-BRD) is that they have
higher-order temporal dependencies in their updating rules,
i.e., use the current strategy ri(t) for obtaining the next strat-
egy ri(t+1). To handle the issue, we define a ‘virtual’ process
(see νi(t) in Appendix) and argue its convergence under the
relation to that of the original process {ri(t), t ∈ Z≥0}.

VI. NUMERICAL RESULTS

We now provide numerical results that demonstrate our
analytical findings. For numerical experiments, we consider
proportional fairness across users, e.g., Ui(·) = log(·) for
all users i. We first plot convergence speeds of the learning
dynamics designed from our game, in terms of intensity and
network utility to support Theorem 2. Second, we compare
the convergence speed of the proposed game dynamics and
other utility optimal CSMA algorithms in [38] and [19], which
we denote by JW and EJW, respectively. Both compared
algorithms iteratively update intensities based on the gradient
of the dual problem of A-OPT with small and decreasing
step size αi(t) = 1/t, and common utility function U(·) as
specified by:

ri(t+ 1) = ri(t) + αi(t)

(
U ′−1

(
ri(t)

β

)
− ŝi(t)

)
. (14)

Note that to guarantee the convergence, the update intervals
of JW increase exponentially so that the ŝi(t) becomes close
to si(r(t)). Finally, we present the numerical results that
show the convergence speeds and price-of-anarchy of proposed
learning dynamics from our game oCSMA(β) for various
β. Since network utility has negative value in our frame-
work, to get more intuitive values, we use GAT (Geometric
Average of user Throughput) instead, which is defined as
(Πi∈V si(r(t)))1/n. Note that under the proportional fairness,
maiximizing GAT equals to maximizing the aggregate log
utilities. The network topology under which our results are
presented here is one that leads to the 5× 5 grid interference
graph. More results are provided in our technical report [45].
(i) The game dynamics SA-BRD, SA-JD, and SA-GD converge
to the unique non-trivial NE. Fig. 2(a) demonstrates the The-
orem 2, i.e., convergence of intensity and GAT to the unique
non-trivial NE under SA-BRD, SA-JD and SA-GD, where we
use β = 1.0 and α = 0.5. We see that all dynamics converge
to the same value after long iterations. The convergence speeds
of all algorithms do not show much difference.
(ii) The convergence speed of three proposed learning dynam-
ics is much faster than that of JW and EJW. Here, we run
the simulation under the same setup as in Fig. 2(a). Fig. 2(b)
shows the traces of transmission intensities and GATs of three
proposed dynamics, JW, and EJW. Since the convergence
patterns of three proposed dynamics are all similar, we plot
only SA-BRD out of three game dynamics and compare with
other conventional algorithms. Regarding the intensity, we
observe that SA-BRD converges within 4× 106 frames, while
JW and EJW require more than 107 iterations. The GAT of
SA-BRD also converges faster than that of other algorithms.
Although the intensities of JW and EJW seem to converge in
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Fig. 2. Numerical results for 5× 5 grid interference graph

early iterations, they are still growing down very slowly to the
point to which SA-BRD converges.

(iii) Tradeoff between efficiency and convergence speed. As
stated in Theorem 1, PoA of SA-BRD, SA-JD and SA-GD is
asymptotically 1/β. To support it through numerical examples,
we vary β and plot the GAT at the converged non-trivial NE.
For the relation between convergence speed and β, we also
measure the convergence time to reach the NE. Fig. 2(c) shows
that, as β grows, SA-based dynamics require exponentially
long time to reach the equilibrium point, and the corresponding
point becomes closer to the socially optimal point. According
to the numerical experiments, the GAT with β = 3.0 is 0.4986
and converges after almost 5× 108 iterations, while that with
β = 1.0 is 0.4342 and converges after 4× 106 iterations.

VII. CONCLUSION

Despite a large array of game-theoretic studies on wireless
MAC, to the best of knowledge, this is the first game-theoretic
work that is utility optimal over the maximum throughput
region in wireless multi-hop networks. We start by designing
a CSMA game whose equilibrum properties such as unique-
ness and price-of-anarchy are first analyzed, and we propose
three game-learning dynamics based on the idea of stochastic
approximation technique. Our theoretical findings exploit the
unique features of CSMA, where the price function is smartly
designed so that (non-trivial) NE is unique and is very close to
the socially optimal point as well as fully-distributed dynamics
are feasible.
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APPENDIX: PROOF OF THEOREM 2

Due to space limitation, we focus on summarizing the key
proof procedures.

Proof of convergence of SA-JD and SA-GD. We first define
following sequence {ν(t), t ∈ N} as:

νi(t) = ri(t)− (1− α)ri(t− 1),

ri(t) = α
νi(t)

α
+ (1− α)ri(t− 1). (15)

It is noteworthy that ri(t) is an exponential moving average
of {νi(j)α |1 ≤ j ≤ t}.

Then, SA-JD’s update rule is represented as

νi(t+ 1) = αβU ′i(s̄i(t))

= αβU ′i

(
s̄i(t− 1)− 1

t
(s̄i(t− 1)− ŝi(t))

)
≈ αβ

(
U ′i(s̄i(t− 1))− 1

t
(s̄i(t− 1)− ŝi(t))U ′′i (s̄i(t− 1))

)
= αβU ′i(s̄i(t− 1)) +

1

t
g(νi(t))(s̄i(t− 1)− ŝi(t))

= νi(t) +
1

t
g(νi(t))

(
U ′−1
i

(
νi(t)

αβ

)
− ŝi(t)

)
,

where g(x) = −αβU ′′i (U ′−1
i ( x

αβ )), and g(x) > 0 due to
concavity of utility functions.

Since ri ∈ [rmin, rmax], from (15), there exist M and L
such that∣∣∣∣g(νi(t))

α

(
U ′−1
i

(
νi(t)

αβ

)
− ŝi(t)

)∣∣∣∣ < M and |νi(t)| < L,

for all t. For ε > 0, let T (ε) :=
4 log( εα4L )

ε log(1−α) . Then, for all

t ≥ T (ε),
∣∣∣νi(t)α − ri(t)

∣∣∣ ≤ ε ·M, because 4

∣∣∣∣νi(t)α
− ri(t)

∣∣∣∣ =

∣∣∣∣∣∣νi(t)α
−

t−1∑
j=0

νi(t− j)
α

α(1− α)j

∣∣∣∣∣∣
≤

t−1∑
j=0

∣∣∣∣νi(t)α
− νi(t− j)

α

∣∣∣∣α(1− α)j

(a)

≤ εt/4

t− εt/4
M +

2L

α

t−1∑
j=εt/4

α(1− α)j

≤ ε

2
M +

2L

α
(1− α)εt/4 ≤ ε, (16)

where (a) comes from the followings:

εt/4−1∑
j=0

∣∣∣∣νi(t)α
− νi(t− j)

α

∣∣∣∣α(1− α)j

4Here, we use just εt/4 instead of dεt/4e for notionaly simplicity.
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≤
εt/4−1∑
j=1

j∑
k=1

∣∣∣∣νi(t− k + 1)

α
− νi(t− k)

α

∣∣∣∣α(1− α)j

≤
εt/4−1∑
j=1

j ·M
t− j

α(1− α)j ≤ εt/4

t− εt/4
M.

Therefore, limt→∞
νi(t)
α − ri(t) = 0.

We now, from the discrete-time sequence {ν(t), t ∈ N},
define a continuous-time interpolation ν̄(·) with τ(k) :=∑k
j=1

g(νi(j))
j . We make the continuous-time interpolation

such that, for all t ∈ [τ(k), τ(k + 1)),

ν̄i(t) = νi(k) + (νi(k + 1)− νi(k))(t− k),

and also denote s̄i(t) = ŝi(k) · 1τ(k)≤t<τ(k+1), where 1E is
the indicator function for the event E.

From the nice properties of the utility function (continuous
and twice-differentiable) and by restricting our attention to
the compact strategy set [rmin, rmax], it is not hard to check
that this algorithm satisfies sufficient conditions of a classical
stochastic approximation algorithm with controlled Markov
noise [19], [46] for convergence. In particular, we have that
when t is large, ν̄ is well approximated by the solution ν̃ of
the following ODE system: for all i,

˙̃νi = g(ν̃i)[U
′−1
i

(
ν̃i
αβ

)
−
∑
σ

πν̃/ασ σi]. (17)

Furthermore, the above ODE converges to a unique fixed point
ν∗∗ such that r∗∗ = ν∗∗

α and

αβU ′i(si(r
∗∗)) = αβU ′i(si(

ν∗∗

α
)) = ν∗∗i = αr∗∗i .

Thus, we conclude that r(t) converges to r∗∗ such that

r∗∗i = βU ′i(si(r
∗∗)),

and it is clear that r∗∗ = rNE, which completes the proof.
In case of SA-GD, the convergence can be proved similarly

to SA-JD, just by considering α∂si(r)
∂ri

instead of α in SA-JD.
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