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ABSTRACT
In various online/offline networked environments, it is very
popular that the system can benefit from coordinating ac-
tions of two interacting nodes, but incur some cost due to
such coordination. Examples include a wireless sensor net-
works with duty cycling, where a sensor node consumes a
certain amount of energy when it is awake, but a coordi-
nated operation of sensors enables some meaningful tasks,
e.g., sensed data forwarding, collaborative sensing of a phe-
nomenon, or efficient decision of further sensing actions. In
this paper, we formulate an optimization problem that cap-
tures the amount of coordination gain at the cost of node
activation over networks. This problem is challenging since
the target utility is a function of the long-term time por-
tion of the inter-coupled activations of two adjacent nodes,
and thus a standard Lagrange duality theory is hard to ap-
ply to obtain a distributed decomposition as in the stan-
dard NUM (Network Utility Maximization). We propose a
fully-distributed algorithm that requires only one-hop mes-
sage passing. Our approach is inspired by a control of Ising
model in statistical physics, and the proposed algorithm is
motivated by a stochastic approximation method that runs a
Markov chain incompletely over time, but provably guaran-
tees its convergence to the optimal solution. We validate our
theoretical findings on convergence and optimality through
extensive simulations under various scenarios.

CCS Concepts
•Theory of computation → Stochastic approxima-
tion; Design and analysis of algorithms; Distributed algo-
rithms; •Mathematics of computing → Network opti-
mization;
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1. INTRODUCTION
In many online/offline networks, a variety of gains among

nodes and users are generated when they are in a similar
state. Examples are diverse, as summarized in what follows:
◦ Wireless sensor networks. In wireless sensor networks

with duty cycled node activations for energy saving, each
sensor node decides to be awake or not over time, which
further depends on its neighbors’ wake-up state and dis-
tance to the node. When two nearby nodes communi-
cate, they are equipped with a robust wireless channel for
mutual communication, and thus their coordination (e.g.,
message exchange) can become more powerful at the cost
of energy consumption while they are awake [5, 6]. Thus,
to achieve the desired coordination gain while turning off
redundant sensors, each sensor node should smartly make
decisions of waking up or not, which should often be done
in a distributed manner.
◦ Social networks. In online/offline social networks, social

relationships and interactions are of critical interests, since
strength of such interactions often determines how the
network evolves, e.g., adoption of a technology or spread
of information. For example, when a new technology be-
comes available, using the social relationships, more coor-
dination gain due to compatibility of the technology be-
tween two individuals is generated, whereas a certain cost
due to technology adoption is incurred, e.g., buying a new
OS software [1, 12,18].
◦ Wireless cellular networks. Multiple base stations coordi-

nate to serve a bandwidth-thirsty user such as one in the
cell-edge, to provide more frequency and time resource in
a collaborative manner, often referred to as CoMP (Co-
ordinated Multi-Point communications) [2, 13]. In this
application, a logical choice for coordination is to appro-
priately choose a signal power to serve the user. Thus,
this clearly generates the coordination gain to the user,
but at the cost of energy consumption.

In this paper, we formulate an optimization problem, which
we call coordination maximization that captures the gain due
to peer-to-peer coordination between two nodes, but also the
cost due to individual node activations, as in the following
form:
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max
all λi and all λij

∑
all connected

node pairs (i,j)

Uij(λij)−
∑

all node i

Ci(λi), (1)

where Uij(·) and Ci(·) are the coordination utility and the
node activation cost functions, respectively. Intuitively, λij
is the long-term time portion when both nodes i and j are si-
multaneously activated and thus coordinated, and λi is just
the long-term time portion when node i is activated. This
optimization appears to be a simple variant of a standard
NUM (Network Utility Maximization) [11, 15, 21], where it
is allowed to easily develop a distributed algorithm converg-
ing to the optimal solution. However, the problem in (1)
significantly differs from a standard NUM problem, thus de-
veloping a distributed algorithm is far from being trivial.
The main challenges lie in the fact that the standard La-
grange duality theory for a distributed decomposition is not
possible since the objective function includes the term which
is a function of the long-term inter-coupling of the states of
a pair of connected nodes, and thus, separability is not per-
mitted.

1.1 Main Contribution
The main contribution of this paper lies in developing a

fully distributed algorithm that requires only one-hop mes-
sage passing, yet provably converges to the optimal solution
of the coordination maximization problem in (1), which we
call CoordMax algorithm. In many engineering systems,
we often observe the trade-off between efficiency and com-
plexity. Optimal algorithms often require extensive mes-
sage passing or heavy computational challenges, but light-
weight approximate algorithms incur optimality degrada-
tion, whereas our algorithm achieves optimality only with
locally-limited message passing.

The key technique of our algorithm is sketched in what fol-
lows: we first construct a Markov chain whose states are the
set of all vectors representing the node activations. Then,
each node runs a distributed algorithm corresponding to run-
ning and sampling the Markov chain in a decentralized man-
ner, i.e., MCMC (Markov Chain Monte Carlo), so that the
marginal long-term coordination and node activation rates
are the solution of (1). We appropriately choose a step-size
to provably ensure its convergence to the optimal solution.
The proof technique is based on a stochastic approxima-
tion technique where we show that the stochastic dynamics
asymptotically converge to a differential equation whose sta-
tionary point corresponds to the target optimum.

CoordMax can be interpreted as a way of controlling
the parameters of the Glauber dynamics over an Ising model
[8, 17] in statistical physics. In particular, to capture pair-
wise coordinations in the network and node-wise costs, we
take a graphical model framework, which is Ising model, that
represents a singleton and pair-wise interactions among ran-
dom variables by a parametrized undirected graph structure.
CoordMax corresponds to an efficient, distributed control
mechanism that suitably chooses the parameters of Ising
model, leading the corresponding marginals of nodes and
edges to the optimal solution of a coordination maximization
problem (1). Despite an extensive array of research on Ising
model in statistical physics [7,8,24,25], most of them study

(i) phase transitions and critical phenomena for given Ising
parameters, or (ii) configuration decision strategies again
for given Ising parameters towards the fast propagation of a
certain state.

1.2 Related Work
A large array of works about network utility maximiza-

tion (NUM) problem have been studied, see [11, 15, 21] for
surveys and tutorial. The objective of NUM problem is to
maximize a sum of all nodes’ utilities, while not consider-
ing any edge-wise status, thus the separability provides a
useful dual-based decomposition for an easy development of
a distributed algorithm. In recent years, the researches on
achieving optimality in both throughput and utility in wire-
less scheduling (in a decentralized manner) have been stud-
ied [9, 16, 19, 22, 23]. The CSMA setting of the multi-hop
wireless networks can be understood by a hard-core graph-
ical model, which is a special case of Ising model in the
way that it only captures node-wise dependency. The Intu-
itive idea of these works is that wireless links dynamically
adjust access intensities by using local information such as
queue-length so as to converge to the utility-optimal point
or stabilize the network whenever possible.

A variety of gains from coordinating actions of wireless
terminals or users have been widely studied in wireless net-
works. There exists many approaches encouraging coor-
dination among base stations in cellular mobile systems,
e.g., coordinated multi-point transmission (CoMP) [2, 10,
13]. In this context, coordination between base stations al-
lows power gain, channel rank advantage, and/or diversity
gains. In the area of sensor networks, distributed coordi-
nation schemes have been proposed recently, where sensors
adaptively select to be coordinators or not, i.e., stay awake
and forward information or not, while turning off redundant
sensors. This often (i) preserves capacity [6], (ii) improves
the network’s lifetime and communication latency, by using
a geo-location information of sensors [27], or (iii) builds a
self-configuring localization system [5].

Many questions in online/offline social networks are based
on the social interactions among individuals. Coordinating
actions of two individuals in social networks is of impor-
tance, since the power of interactions often determines how
the network evolves. The authors in [26] have highlighted
an importance of a coordination mechanism such as a social
structure among individuals, for efficient knowledge sharing.
The authors in [1] have conducted large field experiments to
identify the effect of coordination, e.g., strength of social
ties, in word-of-mouth advertising application. Many works
including [12,18,20] studied how to control node activations
or seeding set of nodes for speeding up a diffusion and math-
ematically analyzed diffusion time, where individuals’ inter-
action is modeled by a coordination game [18, 20] or Ising
model in statistical physics [12].

Our paper is also based on the importance of the coor-
dination powers among nodes or individuals. However, our
main interest is to find a sequence of node activations (gen-
erated by a distributed algorithm) leading to the solution of
the problem in (1) that maximizes the network-wide coordi-
nation gain with each node’s activation incurring some cost.
Organization. The rest of the paper is organized as follows.
In Section 2, we introduce a network model and formulate
a coordination maximization problem. Section 3 provides
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the description of our algorithm and its convergence and
optimality analysis, including backgrounds on Ising model
and stochastic approximation procedure. We then present
simulation results in Section 4 to support the theoretical
findings, and conclude in Section 5.

2. MODEL AND PRELIMINARIES

2.1 Network Model
Network model. In this paper, we consider a network G =
(V,E) consisting of a set V of nodes and a set E ⊂ V × V
of edges. With this graphical representation, each node cor-
responds to an agent in social networks or a sensor node
in wireless sensor networks, and each edge corresponds to a
physical connectivity or a social relationship between nodes,
i.e., (i, j) ∈ E means that node i and node j are connected
and have an interaction. Note that we study undirected net-
works where interaction requires mutual consent, i.e., (i, j)
is equivalent to (j, i). Let N (i) = {j ∈ V : (i, j) ∈ E}
denote the neighbors of node i.
Configuration and coordination scheduling. We con-
sider a continuous time framework. Let σi(t) ∈ {0, 1} indi-
cate whether node i is active at time t or not, i.e., σi(t) = 1
means that the node i is active at time t, and 0 otherwise.
We say that nodes i and j are (or edge (i, j) is) coordinated
when σi(t)σj(t) = 1. We also denote by σ(t) = [σi(t)]i∈V
a node configuration at time t, and it is clear that a set of
possible configurations of the graph G is defined as I(G) :=
{0, 1}|V |. To formally discuss a coordination gain, which we
will introduce later, we define a coordination configuration
vector as follows:

φ(σ) := ([σi]i∈V , [σiσj ](i,j)∈E), (2)

which is an augmented configuration vector capturing the
activation status of nodes and coordination status of edges.
Then, every coordination configuration belongs to Φ(G) :=
{0, 1}|V |+|E|. Now, a coordination scheduling (or simply
scheduling) algorithm is a mechanism that selects σ(t) ∈
I(G) (thus a coordination configuration φ(σ(t)) ∈ Φ(G) is
also determined) over time t ∈ R+ .
Coordination capacity region. We now define the max-
imum achievable coordination region (also called coordina-
tion capacity region) Λ ⊂ [0, 1]|V |+|E| of the network, which
is the convex hull of the feasible coordination configuration
set Φ(G), i.e.,

Λ :=

{ ∑
σ∈I(G)

α(σ)φ(σ) :
∑

σ∈I(G)

α(σ) = 1, α(·) ≥ 0

}
.

The intuition of the notion of coordination capacity region
comes from the fact that any coordination scheduling algo-
rithm has to choose a node configuration from I(G) over
time (thus a coordination φ(σ) is determined), and α(σ)
denotes the fraction of time selecting a node configuration
σ (and thus a coordination φ(σ)). Hence, the long-term av-
erage time portion of node activation and edge coordination
induced by any scheduling algorithm must belong to Λ.

2.2 Problem Formulation
Objective. We require nodes and edges to control its long-
term time portion of node activation and edge coordination
close to some boundary of Λ. Specifically, we aim at de-

1 2 3
(2, 3)(1, 2)

Figure 1: An example line network with 3 nodes and 2 edges,
where there are 8 feasible node configurations σ ∈ {0, 1}3.

signing a coordination scheduling algorithm that makes de-
cisions σ(t) ∈ I(G) over time t so that the long-term time
portion of node activation and edge coordination converges
to a solution of the following optimization problem:

(OPT) max
λ∈Λ

∑
(i,j)∈E

Uij(λij)−
∑
i∈V

Ci(λi). (3)

This mathematical problem captures dependencies among
nodes and a trade-off between coordination gain and node
activation cost, where Uij : [0, 1] → R is a strictly con-
cave and twice-differentiable coordination gain function of
edge (i, j) ∈ E, and Ci : [0, 1] → R is a strictly con-
vex, twice-differentiable cost function of node i ∈ V . It
is easy to see that OPT has the unique solution λ∗ :=
([λ∗i ]i∈V , [λ

∗
ij ](i,j)∈E). The network utility is defined as a to-

tal coordination utility subtracted by a total incurring cost.
More coordination gain is generated as nodes i and j are
coordinated more, but it also incurs more cost of nodes i
and j to be activated.

One of the choices of Uij and Ci is a linear scalarization
of multi-objective optimization, i.e., a weighted coordina-
tion gain and weighted incurring activation cost with weights
w = [wij ](i,j)∈E and γ = [γi]i∈V , respectively. For example,
one can choose ∀i ∈ V, ∀(i, j) ∈ E,

Uij(x) = wij · log(x), Ci(x) = γi ·
1

1− x ,

so that OPT becomes a weighted proportional fairness of
coordination as well as a weighted cost incurred by node ac-
tivation, where the trade-off between those two is externally
controlled by w and γ.

In this work, our goal is to design a distributed coordina-
tion scheduling algorithm using only local information, e.g.,
one-hop message passing, that converges to the optimal so-
lution of OPT, i.e.,

lim
T→∞

1

T

∫ T

0

σi(t)dt = λ∗i for all i ∈ V,

lim
T→∞

1

T

∫ T

0

σi(t)σj(t)dt = λ∗ij for all (i, j) ∈ E.

Example. To motivate further and illustrate, we provide
an example of a coordination maximization problem and
its solution structure, where we use a line topology with 3
nodes and 2 edges, as depicted in Figure 1. The coordination
maximization problem OPT in this case is expressed by:

max
λ∈Λ

[
U12(λ12) + U23(λ23)−

(
C1(λ1) + C2(λ2) + C3(λ3)

)]
.

Let the long-term time portion of the activation and coor-
dination of nodes and edges be characterized by the distri-
bution π(σ) over each node configuration σ ∈ {0, 1}3, i.e.,

λ1 = π(1, 0, 0) + π(1, 0, 1) + π(1, 1, 0) + π(1, 1, 1),
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λ2 = π(0, 1, 0) + π(0, 1, 1) + π(1, 1, 0) + π(1, 1, 1),
λ3 = π(0, 0, 1) + π(0, 1, 1) + π(1, 0, 1) + π(1, 1, 1),
λ12 = π(1, 1, 0) + π(1, 1, 1),
λ23 = π(0, 1, 1) + π(1, 1, 1).

Note that the total coordination gain is generated according
to the long-term coordination time portion of two edges, i.e.,
λ12, λ23, and the total incurring cost is due to the long-time
activation of three nodes, i.e., λ1, λ2, λ3.

A smart scheduling is required since each node’s acti-
vation should be coordinated with its neighboring nodes
in order to produce enough gain at the cost of activation.
For expositional convenience, let us choose the following
utility and cost functions: U12(x) = U23(x) = log(x) and
C1(x) = C2(x) = C3(x) = x2, then a simple algebra gives
the following distributions and the resulting optimal solu-
tion:

π∗(0, 0, 0) = 0.4226, π∗(1, 1, 1) = 0.5774,

(λ∗1, λ
∗
2, λ
∗
3, λ
∗
12, λ

∗
23) = (0.5774, 0.5774, 0.5774, 0.5774, 0.5774),

where the most and the only “efficient” node configuration
turns out to be (1, 1, 1) with some cost balancing by avoiding
the activation of any node, i.e., scheduling (0, 0, 0). We now
choose a different cost function only for node 3 by C3(x) =
3x2 (i.e., more cost is incurred for node 3), then the optimal
distribution and the resulting optimal solution become:

π∗(0, 0, 0) = 0.5, π∗(1, 1, 0) = 0.0915, π∗(1, 1, 1) = 0.4085,

(λ∗1, λ
∗
2, λ
∗
3, λ
∗
12, λ

∗
23) = (0.5, 0.5, 0.4085, 0.5, 0.4085),

where the optimal solution is attained by assigning some
probability to the configuration (1, 1, 0) rather than giving
a high priority only to (1, 1, 1) in the first case. A lot of
challenges arise for (i) more complex, general topologies, (ii)
general form of utility and cost functions Uij(·) and Ci(·),
and more importantly (iii) the solution should be found in
a distributed manner.

3. ALGORITHM AND ANALYSIS
In this section, we develop an adaptive scheduling algo-

rithm that operates in a distributed manner, yet asymptot-
ically converges to the solution of OPT problem (3), which
we call CoordMax algorithm. To describe the algorithm,
we introduce a parameter θ ∈ R|V |+|E| as:

θ = ([θi]i∈V , [θij ](i,j)∈E),

where θi is a parameter for node i and θij is that for edge
(i, j). A configuration decision is made according to this
parameter θ, which we call algorithm parameter, and thus
CoordMax is an algorithm that makes decisions of node
configuration via controlling θ, over time t. Moreover, by
“distributed”, we mean that each node and edge updates its
parameter with one-hop message passing, relying only on
pure local observations.

3.1 Algorithm Description

3.1.1 Configuration Change Dynamics
We first present a time-by-time dynamics of changing con-

figurations of the system for a fixed algorithm parameter,
simply called CCD (Configuration Change Dynamics). Un-
der the dynamics with a fixed θ, every node has a Poisson

Configuration Change Dynamics: CCD(θ)

Input: Algorithm parameter θ, current configuration σ.
Output: New configuration σ′.

S1. Select a node i when node i’s clock ticks.

S2. Node i changes its configuration from σi to σ′i

σ′i =

1, with probability
exp(θi+

∑
j∈N(i) σjθij)

1+exp(θi+
∑

j∈N(i) θijσj)

0, with probability 1
1+exp(θi+

∑
j∈N(i) θijσj)

(4)

and σ′j = σj for all j 6= i.

clock with unit rate, and nodes try to decide a new configu-
ration σ′ based on a current configuration σ by the following
procedure, consisting of two steps S1 and S2.

Note that Poisson clock of each node leads to the uniform
node selection, and given a graph G, CCD changes the con-
figuration over time in a distributed manner that requires
only one-hop message passing. In particular, when node i’s
clock ticks in S1, it requires to know (i) configuration status
of neighboring nodes, i.e., {σj : j ∈ N (i)}, and (ii) parame-
ter of neighboring edges, i.e., {θij : j ∈ N (i)}, in S2.

We can easily check that CCD for a given parameter θ
leads to a continuous-time Markov chain {σ(t)}∞t=0 achieving
the following stationary distribution pθ = [pθ(σ)]σ∈I(G) on
the finite state space I(G):

pθ(σ) ∝ exp{〈θ,φ(σ)〉}
= exp{

∑
i∈V

θiσi +
∑

(i,j)∈E

θijσiσj}, (5)

where 〈a, b〉 is the inner product of two vectors a and b.
Moreover, {σ(t)}∞t=0 is an irreducible, aperiodic, and re-
versible Markov process [14].

Given the parameter θ, the ergodicity and reversibility
of the Markov process imply that the marginal probabil-
ity of nodes and edges under the stationary distribution pθ,
denoted by s(θ) = ([si(θ)]i∈V , [sij(θ)](i,j)∈E), become the
long-term time portion of node activation and edge coordi-
nation, and can be characterized as: ∀i ∈ V, (i, j) ∈ E,

si(θ) = Epθ [σi] =
∑

σ∈I(G):σi=1

pθ(σ),

sij(θ) = Epθ [σiσj ] =
∑

σ∈I(G):σiσj=1

pθ(σ). (6)

3.1.2 CoordMax Algorithm
We now describe a CoordMax algorithm in Algorithm 1.

Time is divided into frames k = 0, 1, · · · , of fixed durations
T , and each node i updates parameter θi and {θij : j ∈
N (i)} at the end of each frame in S3. To this end, at the
beginning of each frame k, each node i sends a message
including its own information, i.e., configuration status and
parameter of node i, to its neighboring nodes in S1, and
then measures (i) its node activation rate ŝi[k], and (ii) edge
coordination rate of its connecting edges {ŝij [k] : j ∈ N (i)}
in S2, i.e.,

ŝi[k] =
1

T

∫ (k+1)T

kT

σi(x)dx,
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ŝij [k] =
1

T

∫ (k+1)T

kT

σi(x)σj(x)dx.

This is interpreted as the number of activations and coor-
dinations at nodes and edges at the frame k, and it can be
measured from the local observations by exchanging mes-
sages about its own configuration status with neighbors.

Algorithm 1 CoordMax: At each frame k = 0, 1, . . . ,

Input: Efficiency factor β, boundary values θmin, θmax

Output: Algorithm parameter θ[k + 1]
Initialize: Set θ[0] arbitrarily, and a[0] = 0.

S1. Each node i sends a message (σi[k], θi[k]) to its neigh-
boring nodes N (i).

S2. The system runs the configuration change dynam-
ics CCD(θ), and each node i records the number of its
activations and coordinations of its connecting edges.

S3. Each node i updates local parameters, θi and {θij :
j ∈ N (i)}, with the step-size constant a[k] as follows:

θi[k + 1] =

[
θi[k] + a[k]

(
C′−1
i

(
−θi[k]

β

)
− ŝi[k]

)]θmax

θmin

,

(7)

θij [k + 1] =

[
θij [k] + a[k]

(
U ′−1
ij

(
θij [k]

β

)
− ŝij [k]

)]θmax

θmin

.

(8)

In CoordMax algorithm, β is an efficiency parameter, as
shown later on; a : N→ R+ is a step-size function; θmin, θmax

are the given constants; and [·]yx := max(y,min(x, ·)). The
choice of a step-size a is of critical importance for conver-
gence of this algorithm, and β controls the efficiency of the
algorithm, which is elaborated in Section 3.2. As mentioned
before, CoordMax operates in a distributed manner in the
way that each node updates its local parameters based only
on local information, i.e., one-hop message passing and local
observations.

3.2 Convergence and Optimality Analysis
We now analyze the convergence and asymptotic optimal-

ity of CoordMax algorithm. We consider an approximated
problem A-OPT (parametrized by β > 0) of OPT:

(A-OPT)

max H(µ) + β

( ∑
(i,j)∈E

Uij(λij)−
∑
i∈V

Ci(λi)

)
over µ ∈M, λ ∈ [0, 1]|V |+|E|

subject to λi = Eµ[σi], ∀i ∈ V,
λij = Eµ[σiσj ], ∀(i, j) ∈ E, (9)

where we let M be a space of all probability distributions
over I(G), and denote by H(µ) the entropy of µ ∈M, i.e.,

H(µ) = −
∑

σ∈I(G)

µ(σ) log µ(σ).

Since the entropy term H(µ) is bounded above and be-
low, a solution of A-OPT provides an approximate solu-
tion of OPT, where the gap due to this approximation
decays for increasing β (we will discuss the trade-off be-
tween approximation efficiency and convergence speed in
Section 4 via numerical results). We also denote by λ[k] =
([λi[k]]i∈V , [λij [k]](i,j)∈E) the vector representing the cumu-
lative average node activation rate and edge coordination
rate up to frame k, i.e.,

λi[k] =
1

k

k−1∑
m=0

ŝi[m], ∀i ∈ V,

λij [k] =
1

k

k−1∑
m=0

ŝij [m], ∀(i, j) ∈ E.

To prove the convergence and optimality of CoordMax,
we need following assumption (A1), meaning that we choose
θmin and θmax, such that the interval [θmin, θmax] is large
enough to include the optimal solution of A-OPT.

(A1) If θ0 ∈ R|V |+|E| solves for all i ∈ V and (i, j) ∈ E,

θ0
i = −βC′i

( ∑
σ∈I(G)

σipθ0(σ)

)
,

θ0
ij = βU ′ij

( ∑
σ∈I(G)

σiσjpθ0(σ)

)
,

then θmin ≤ θ0
i ≤ θmax for all i ∈ V , and θmin ≤ θ0

ij ≤ θmax

for all (i, j) ∈ E. Note that, for example, if the coordination
gain function Uij(·) is such that U ′ij(0) < ∞, then (A1) for
θ0
ij is satisfied when θmin ≤ βU ′ij(1) and θmax ≥ βU ′ij(0), and

we can similarly check it for other edges, and other nodes
with cost function Ci(·). One can easily verify that this
assumption provides a guarantee that the convergent point
of our algorithm actually belongs to bounded region.

The next theorem is our main result, which states the con-
vergence of CoordMax to a point arbitrarily close to the
coordination-optimal solution, under the decreasing step-
size function.

Theorem 1 (Convergence and Optimality) Choose a pos-
itive step-size function a(·) satisfying

∞∑
k=0

a[k] =∞,
∞∑
k=0

a[k]2 ≤ ∞. (10)

Under (A1), for any initial condition θ[0],
(i) Convergence. CoordMax converges to (λo,θo), i.e.,

lim
k→∞

θ[k] = θo and lim
k→∞

λ[k] = λo, almost surely,

where θo and λo are such that (pθo ,λo) is the solution
of A-OPT in (9) (over µ and λ).

(ii) Optimality. Furthermore, CoordMax approximately
solves OPT in the following sense:( ∑

(i,j)∈E

Uij(λ
o
ij)−

∑
i∈V

Ci(λ
o
i )

)
≥

( ∑
(i,j)∈E

Uij(λ
∗
ij)−

∑
i∈V

Ci(λ
∗
i )

)
− log |I(G)|

β
(11)
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The proof of Theorem 1 is presented in Section 3.3. Co-
ordMax is interpreted as a stochastic approximation pro-
cedure with controlled Markov noise, and a main techni-
cal challenge lies in handling a non-trivial coupling between
Markov process of CCD and parameter θ updates. Sim-
ply, the conditions of the step-size function in Theorem 1
play a crucial role to provide a provable convergence, in the
way that we intuitively expect that with decreasing step-
sizes, the speed of variations of the algorithm parameter
tends to zero after sufficiently long time, see Section 3.3 for
the mathematical detail. Moreover, Theorem 1 states that
CoordMax converges towards a point that is arbitrarily
close to the coordination-optimizer, as we choose sufficiently
large β. A typical example choice of the step-size function
is a[k] = 1

k
. Moreover, θi may be interpreted as an aggres-

siveness (or willingness) of node i to be activated, and θij
may be interpreted as a power of interaction between nodes
i and j. We may expect that a parameter θij of a dominant
edge that has a large coordination gain, will reach to a large
value in result.

3.3 Proof of Theorem 1
The convergence analysis of CoordMax is on the strength

of stochastic approximation theory. As we will verify later,
our algorithm is interpreted as a stochastic approximation
procedure with controlled continuous-time Markov process,
where the stationary distribution of the underlying Markov
process from CCD indeed corresponds to an Ising model.
In Section 3.3.1, we first describe Ising model, and provide
the convergence analysis of a general stochastic approxima-
tion procedure with a controlled Markov process, based on
an ordinary differential equation approach. Then, we show
the convergence and asymptotic optimality of CoordMax
in Section 3.3.2.

3.3.1 Preliminaries
Ising model. Under our coordination scheduling algorithm
represented in Section 3.1, a change of a configuration from
σ to σ′ is affected by a current configuration σ and current
algorithm parameter θ, and the stationary distribution of
the resulting Markov chain, i.e., pθ, is a parametrized by
θ. To mathematically represent and understand such condi-
tional dependencies among nodes, we can explore a graphical
model, which has been emerged as a powerful tool in variety
of fields for succinct representations of joint probability dis-
tributions of some random variables by a graph structure.
Ising model is a class of the graphical models which capture
a singleton and pair-wise interactions among binary random
variables via a parameter vector η, so-called Ising parameter
throughout this paper, i.e., nodes accommodate their config-
urations in such a way to maximize the number of weighted
singleton and pair-wise agreements, formally defined in the
following way: for any feasible configuration x,

pη(x) := exp{
∑
i∈V

ηixi +
∑

(i,j)∈E

ηijxixj −A(η)},(12)

where A(η) is a normalizing constant. We can now eas-
ily check that the stationary distribution of Markov chain
resulting from CCD dynamics for a given θ, i.e., pθ =
[pθ(σ)]σ∈I(G), indeed corresponds to Ising model with Ising
parameter θ over configuration space I(G). Moreover, CCD
may be regarded as a Glauber dynamics over an Ising model

under continuous-time setting, and CoordMax can be in-
terpreted as a way of controlling the Ising parameter of the
CCD dynamics over time.
Stochastic approximation with controlled Markov noise.
Consider a general discrete-time stochastic process with the
following form:

x[k + 1] = x[k] + a[k] · v(x[k], Y [k]), ∀k ∈ N, (13)

where x[k] ∈ RL is the system state at the iteration k; a[k]
corresponds to the step-size; and Y [k] is a random variable
representing the random observation during iteration k to
update the system state. This is often called a stochas-
tic approximation with controlled continuous-time Markov
process, in [3, 4]. Here, (i) {z(s)}s≥0 is a stochastic process
taking values in a finite set, (ii) for s ∈ [k, k+1), z(s) evolves
as a continuous-time Markov process zx[k](s) with a transi-
tion kernel controlled by x[k], and (iii) the observation Y [k]

is a function of {z(s)}k≤s<k+1, i.e., Y [k] =
∫ k+1

k
f(z(s))ds,

where f is a bounded function, and v(x, Y ) is a bounded,
continuous, Lipschitz in x and uniformly over Y . We assume
that for any x ∈ RL, the controlled Markov kernel Gx is ir-
reducible and ergodic with stationary distribution πx, and
furthermore, the mapping x 7→ Gx is continuous and x 7→ πx

is Lipschitz continuous. In the following, for all x ∈ RL,
ξx(dy) denotes the stationary distribution of

∫ 1

0
f(zx(s))ds,

where zx(·) is a Markov process with a transition kernel Gx.
We also assume that x[k] remains bounded, which can be
imposed by projecting the algorithm to a bounded subset.

We use a positive monotonically decreasing function a[k]
such that

∑
k a[k] = ∞ and

∑
k a[k]2 < ∞. From the

step-size, we define a virtual time scale α(k) =
∑k−1
i=0 a[i].

Then, a continuous-time interpolation of the system state
for the time scale α is defined as follows: ∀k ∈ N, for all
τ ∈ [α(k), α(k + 1)),

xα(τ) = x[k] + (x[k + 1]− x[k])× τ − α(k)

α(k + 1)− α(k)
. (14)

Under the afore-mentioned assumptions, Theorem 2 states
the convergence guarantee of the iterative procedure (13).

Theorem 2 (Theorem 1 of [22]) Let T > 0, and denote
by x̃s(·) the solution on [s, s + T ] of the following ordinary
differential equation (ODE):

ẋ(τ) =

∫
y

v(x(τ), y) · ξx(τ)(dy) (15)

with x̃s(s) = xα(s). Then, we have almost surely,

lim
s→∞

sup
τ∈[s,s+T ]

‖xα(τ)− x̃s(τ)‖ = 0.

Intuitively, we expect that due to the decreasing step-
sizes, the speed of variations of the system state decreases
and tends to 0 when time sufficiently grows. As a conse-
quence, the dynamics of a stochastic process (13) are close
to those of an irreducible and ergodic Markov process with
fixed generator (as if the system state was frozen), and has
time to converge to its ergodic behavior. Hence, when time
grows large, we have that the system behaves as if the ob-
servation was averaged, i.e., for continuous and bounded f ,
we have that component-wise, almost surely,∫

y

v(x, y)ξx(dy) =
∑
z∈Z

v(x, f(z))πx(z).
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Remark. Theorem 2 states that as time evolves, the dy-
namics of the underlying Markov process is averaged due
to the decreasing step-size, thus “almost reaching the sta-
tionary status.” Thus it suffices to see how the ODE (15)
behaves. We note that the convergence analysis in Theorem
2 follows other known results on stochastic approximation
procedures [4]: under the given step-size conditions, the dy-
namics of (13) converges to the internally chain transitive
invariant set of the ODE (15) via continuous-time interpola-
tion (14), Corollary 8 of [4][pp.74]. In particular, when the
ODE (15) has a unique fixed stable equilibrium point x∗, we
have almost surely: x[k]→ x∗ as k →∞.

3.3.2 Proof of Theorem 1
We first prove that CoordMax converges to the optimal

solution of the approximated problem A-OPT in (9), and
then show that the solution is asymptotically optimal of the
problem OPT in (3). Our main proof strategy follows the
stochastic approximation procedure whose limiting behavior
is understood by an ordinary differential equation (ODE) [4].

Proof. We show that in Step 1, the dynamics (7), (8)
asymptotically approach deterministic trajectory. In Step
2, we prove that the resulting deterministic trajectory con-
verges to the solution of A-OPT, and finally in Step 3, we
show that the solution of A-OPT is asymptotically optimal
of the OPT. To do this, we take the afore-mentioned results
Theorem 2 in classical stochastic approximation theory and
Corollary 8 of [4][pp.74].

Step 1: Converging and averaging. We first define a vir-
tual time scale as:

α(k) =

k−1∑
m=0

a[m].

From the discrete-time sequence {θ[k], k ∈ N} of (7) and
(8), we take a continuous-time interpolation of the algorithm
parameter in the following way. Define {θ(τ) : τ ∈ R+} as:
∀k ∈ N, for all τ ∈ [α(k), α(k + 1)),

θ(τ) = θ[k] + (θ[k + 1]− θ[k])× τ − α(k)

α(k + 1)− α(k)
. (16)

We also define ŝ(τ) := ŝ[k] ·1α(k)≤τ≤α(k+1), where 1A is the
indicator function for the event A. It should be clear that
CoordMax is a stochastic approximation algorithm with
controlled Markov noise as defined in (13). The equivalence
is obtained by: x[k] ≡ θ[k]; Y [k] ≡ ŝ[k]; {z(s)}k≤s<k+1 ≡
{σ(s)}k≤s<k+1 is the process recording the configuration
from CCD with θ[k] during frame k; f(z(s)) ≡ φ(σ(s))
is a coordination configuration; πx ≡ pθ is the stationary
distribution (5) of the CCD(σ); finally

v(x, y) ≡ U ′−1
ij

(
x

β

)
− y, for edge component,

v(x, y) ≡ C′−1
i

(
−x
β

)
− y, for node component.

One can now easily verify that the assumptions of (13) in
Section 3.3.1 are satisfied under our setup. Note that un-
der our setup of Uij(·) and Ci(·), v is a bounded Lipschitz
continuous function, Markov process generated by CCD is
continuous function of θ, and moreover θ 7→ pθ is Lips-
chitz continuous. Then, from Theorem 2, we have following
lemma:

Lemma 1 Let T > 0, and denote by θ̃w(·) the solution on
[w,w+T ] of the following ODE: for all i ∈ V and (i, j) ∈ E,

θ̇i(τ) = C′−1
i

(
−θi(τ)

β

)
−

∑
σ∈I(G)

σipθ(τ)(σ),

˙θij(τ) = U ′−1
ij

(
θij(τ)

β

)
−

∑
σ∈I(G)

σiσjpθ(τ)(σ), (17)

with θ̃w(w) = θ(w). Then, we have almost surely,

lim
w→∞

sup
τ∈[w,w+T ]

‖θ(τ)− θ̃w(τ)‖ = 0.

Lemma 1 is a direct result from Theorem 2, and it states
that the interpolated continuous trajectory θ(·) from the dis-
crete sequence θ[·] of CoordMax asymptotically approaches

the trajectory of θ̃. Note that if the ODE system (17) has a

unique fixed point θo, then we would have limτ→∞ θ̃(τ) =
θo, and thus we have almost surely, limk→∞ θ[k] = θo.

Step 2: Converging to optimality. To complete the proof

of optimality, we show that (17) may be interpreted as a
sub-gradient algorithm solving the dual of the convex prob-
lem (9), similarly in [9]. We now consider the Lagrangian
L of A-OPT with dual variables θi and θij to constraints
λi = Eµ[σi] and λij = Eµ[σiσj ], respectively, as follows:

L(µ,λ;θ)

= H(µ) + β

( ∑
(i,j)∈E

Uij(λij)−
∑
i∈V

Ci(λi)

)
+
∑
i∈V

θi

(
Eµ[σi]− λi

)
+

∑
(i,j)∈E

θij

(
Eµ[σiσj ]− λij

)
= H(µ) +

∑
i∈V

θiEµ[σi] +
∑

(i,j)∈E
θijEµ[σiσj ]

+
∑
i∈V

(
− βCi(λi)− θiλi

)
+

∑
(i,j)∈E

(
βUij(λij)− θijλij

)
.

The solution of A-OPT is the minimum point of the dual
function, which is given by:

D(θ) = supL(µ,λ;θ)

over µ ∈M, λ ∈ [0, 1]|V |+|E|. (18)

Finally, the dual optimization is given by

min D(θ) over θ ∈ R|V |+|E|. (19)

Note that the primal optimization problem (9) is a con-
cave maximization and the dual optimization problem (19)
is a convex minimization due to concavity of entropy and
coordination functions, and convexity of cost functions un-
der our setup. There is no duality gap and hence both have
the same, unique optimal solution, and its sub-gradient al-
gorithm will converge to the solution of (9).

Given the feasible dual θ ∈ R|V |+|E|, let µo(θ),λo(θ) be
the corresponding primal feasible solutions that maximize
the Lagrangian L. Given structure of L, from the Karush-
Kuhn-Tucker (KKT) conditions of (9), it follows that λo(θ)
must be such that: ∀i ∈ V, ∀(i, j) ∈ E,

λoi (θ) = arg max
y∈[0,1]

[
− βCi(y)− θiy

]
, (20)

λoij(θ) = arg max
y∈[0,1]

[
βUij(y)− θijy

]
. (21)
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For µo(θ), observe that

∂L
∂µ(σ)

= −1− logµ(σ) +
∑
i∈V

θiσi +
∑

(i,j)∈E

θijσiσj .

Since µo(θ) is maximizing L, from the above, it follows that
µo(θ) ∈ (0, 1)|V |+|E|. Therefore, for any σ,ρ ∈ I(G) and
σ 6= ρ, it must be that

∂L(µ(θ),λ(θ);θ)

∂µ(σ)
=
∂L(µ(θ),λ(θ);θ)

∂µ(ρ)
,

and thus

µ(σ) ∝ exp(
∑
i∈V

σiθi +
∑

(i,j)∈E

σiσjθij), ∀σ ∈ I(G).

From the above derivatives of Lagrangian function L with
respect to µ, we can conclude that µo(θ) = pθ.

Now, it follows that the dual function is characterized as:

D(θ) = L(µo(θ),λo(θ);θ),

and the dual variables θ capture the slack in the correspond-
ing constraints of (9). Specifically, the slack in each con-
straint is given by

Eµo(θ)[σi] − λoi (θ), ∀i ∈ V,
Eµo(θ)[σiσj ] − λoij(θ), ∀(i, j) ∈ E. (22)

Accounting for (20) and (22), the sub-gradient algorithm
solving the dual problem is given by following ODEs:

θ̇i =

(
C′i

(
−θi
β

)
− Eµo(θ)[σi]

)
, ∀i ∈ V,

˙θij =

(
U ′ij

(
θij
β

)
− Eµo(θ)[σiσj ]

)
, ∀(i, j) ∈ E,(23)

which is equivalent to (17), provided that θ(τ) remains be-
tween [θmin, θmax] component-wisely. Note that the dual so-
lution θo actually belongs to the interval [θmin, θmax] component-
wisely, as a fixed point of (23), under (A1). Since both
primal and dual problem have unique solution (µo,λo), and
θo, respectively, the sub-gradient algorithm converges to θo,
and hence the unique solution of the ODE (17) converges to
θo. Combining with Step 1 and Step 2, we can conclude
that limk→∞ θ[k] = θo.

Step 3: Asymptotic optimality. Finally, to establish good-
ness of the result of coordination optimization algorithm, λo,
note that (λo,νo) is the optimal solution of A-OPT. Now,
the optimal solution of OPT, λ∗, along with an appropri-
ate distribution ν∗ ∈M is one feasible solution of A-OPT.
Therefore, it follows that

β

( ∑
(i,j)∈E

Uij(λ
∗
ij)−

∑
i∈V

Ci(λ
∗
i )

)
(a)

≤ H(ν∗) + β

( ∑
(i,j)∈E

Uij(λ
∗
ij)−

∑
i∈V

Ci(λ
∗
i )

)
(b)

≤ H(µo) + β

( ∑
(i,j)∈E

Uij(λ
o
ij)−

∑
i∈V

Ci(λ
o
i )

)
(c)

≤ log |I(G)|+ β

( ∑
(i,j)∈E

Uij(λ
o
ij)−

∑
i∈V

Ci(λ
o
i )

)

In the above, the first inequality (a) comes from the fact
that the entropy is non-negative, the inequality (b) holds
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(right) topology
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Figure 2: Network topologies

since (λo,νo) is the optimal solution of A-OPT, and finally
we have used the fact that the maximum value of a discrete
valued random variable’s entropy is at most the logarithm
of the cardinality of the support set |I(G)|, for the last in-
equality (c).

4. NUMERICAL RESULTS
In this section, we carry out numerical experiments to

assess the theoretical performance of CoordMax by con-
sidering networks with various topologies and cost functions.
Setup. In this paper, we consider “basic” topologies to show
that our CoordMax converges to the accurate solution,
and a random topology that is regarded as a collection of
such basic topologies for more general results. The network
topologies under which our results are presented here are:
star, complete and random graphs. We consider a propor-
tional fairness across edges with symmetric weights wij for
coordination gain: Uij(x) = log(x) for all edges (i, j) ∈ E,
and consider two cost functions for nodes with symmetric
weights γi: Ci(x) = 2x2, or Ci(x) = 1

1−x for all nodes i ∈ V ,
as classified into the following 6 topologies:
◦ STAR-S1: Star graph with 6 nodes and 5 edges, and nodes

are symmetric: Ci(x) = 2x2, ∀i ∈ V .
◦ STAR-A: Star graph with 6 nodes and 5 edges, and nodes

are asymmetric: only C2(x) = 1
1−x .

◦ COMP-S1: Complete graph with 4 nodes and 6 edges, and
nodes are symmetric: Ci(x) = 2x2, ∀i ∈ V
◦ COMP-A: Complete graph with 4 nodes and 6 edges, and

nodes are asymmetric: only C2(x) = 1
1−x .

◦ RAND-S1: Random graph with 20 nodes and 42 edges,
and nodes are symmetric with cost functions: Ci(x) =
2x2, ∀i ∈ V .
◦ RAND-S2: Random graph with 20 nodes and 42 edges,

and nodes are symmetric with cost functions: Ci(x) =
1

1−x , ∀i ∈ V .
The above six topologies are depicted in Figure 2, i.e.,

the left of Figure 2(a) for STAR-S1, STAR-A, the right of Fig-
ure 2(a) for COMP-S1, COMP-A, and Figure 2(b) for RAND-S1,
RAND-S2. Moreover, we choose a step-size function of the
CoordMax as a[k] = 1/k, which satisfies the conditions of
Theorem 1, and take various values of β from 0.5 to 5.0,
which is a factor of efficiency.
(i) Convergence to the optimal solution: To demon-
strate our analytical findings of convergence and optimality,
we first consider simple cases that show CoordMax finds
the “accurate” solution, where the exact solution can be nu-
merically solved. Then, we show CoordMax’s performance
with two cost functions, under more general topology.
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Figure 3: Convergence of long-term rate (left axis) and coordination gain (right axis) to optimality on simple cases.
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Figure 4: Convergence of long-term rate and coordination gain on RAND topology, for two types of cost functions.

Simple cases: 4 types of environments are investigated
here: STAR-S1, STAR-A, COMP-S1, and COMP-A, and let G∗ de-
note the maximum coordination gain. We first solve the ex-
act coordination-optimal solution of each case: For STAR-S1,
λ∗1 = 0.447, G∗ = −5.218, and for STAR-A, λ∗1 = 0.433, λ∗2 =
0.382, G∗ = −6.5905, whose results with β = 5.0 are shown
in Figure 3(a) and 3(b), respectively. We see that our Co-
ordMax does converge to the solution after long iterations
within a range of O(1/β) gap. Under STAR-A, since node
2 has higher cost, the optimal activation rate of node 2 is
attained at a less value than that under STAR-S1, and less
coordination gain is generated on edge (1, 2), as we see in
Figure 3(b). Under COMP-S1 and COMP-A, the exact opti-
mal solution is attained at λ∗1 = 0.6125, G∗ = −5.942 and
λ∗1 = 0.538, G∗ = −7.619, whose convergence results with
β = 5.0 are illustrated in Figure 3(c) and 3(d), respectively.
Note that the algorithm takes shorter time for convergence
in star topology because each node has only 1 edge except
the hub node, i.e., node 1, thus pairwise interactions are less
complex, while all nodes are interacted with each other, and
thus CoordMax converges after longer time, as we see in
Figure 3. The impact of asymmetries of cost functions is
similarly shown under the complete topology.
Cost functions: We provide numerical results of two types
of cost functions which we mentioned above, under a general
random topology of Figure 2(b). For both cost functions, our
CoordMax does converge, as we see in Figure 4. Note that
at the convergent status, long-term activation rate of a node
is dependent on (i) how many neighbors it has, and (ii) how
powerful its neighbor is in terms of degree of coordination.
As we see in Figure 4(a) and 4(c), node 6, i.e., who has
very little contribution to the coordination gain since it has
only one neighbor, achieves the lowest long-term activation
rate, while node 20 has very high long-term rate. Comparing
nodes 5 and 15, even though both have two neighbors, node
5 achieves a higher long-term rate since one of its neighbors
(node 20) is a hub so that node 5 may implicitly contribute
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Figure 5: Trade-off between efficiency(β) and convergence speed.

to coordination gain of the network via node 20. Next, from
Figure 4(b) and 4(d), we see that the network becomes less
aggressive to be coordinated if nodes have cost functions
Ci(x) = 1

1−x , since this cost function plays a role of pre-
venting exclusive activation of nodes, i.e., infinite amount
of cost is generated when activation rate becomes close to 1.
(ii) Trade-off between efficiency and convergence speed:
As stated in Theorem 1, incurring coordination gain gap of
our algorithm is asymptotically 1

β
. To support it through

numerical examples, we vary β and plot the coordination
gain at the convergence point, and measure the convergence
speed. Figure 5 shows that, as β grows, CoordMax re-
quires longer time to converge, but the corresponding con-
vergent point becomes closer to the optimal solution. From
the numerical results under RAND-S1, coordination gain with
β = 2.0 is −37.570 and converges after 9 × 107 iterations,
while that with β = 0.5 is −43.974 and converges after
8.5× 106 iterations.

5. CONCLUSION
In many networked environments, a variety of gains among

nodes and users are generated from coordinating their ac-
tions. In this paper, we formulate an optimization problem
that captures the amount of coordination gain at the cost
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of node activation over networks, and we develop a fully-
distributed algorithm relying only on one-hop message pass-
ing and local observations, which we call CoordMax. Our
algorithm is inspired by a control of Ising model in statis-
tical physics, and theoretical findings of convergence to op-
timality of CoordMax takes a stochastic approximation
method that runs a Markov chain incompletely over time
with a smartly designed step-size function.
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