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Kyunghan Lee†, Yoora Kim‡, Song Chong�, Injong Rhee†, and Yung Yi�,
{klee8, rhee}@ncsu.edu, kimy@ece.osu.edu, {songchong,yiyung}@kaist.edu

Abstract—This paper analytically derives the delay-capacity
tradeoffs for Lévy mobility: Lévy walks and Lévy flights. Lévy
mobility is a random walk with a power-law flight distribution.
α is the power-law slope of the distribution and 0 < α ≤ 2.
While in Lévy flight, each flight takes a constant flight time, in
Lévy walk, it has a constant velocity which incurs strong spatio-
temporal correlation as flight time depends on traveling distance.
Lévy mobility is of special interest because it is known that Lévy
mobility and human mobility share several common features
including heavy-tail flight distributions. Humans highly influence
the mobility of nodes (smartphones and cars) in real mobile
networks as they carry or drive mobile nodes. Understanding the
fundamental delay-capacity tradeoffs of Lévy mobility provides
important insight into understanding the performance of real
mobile networks. However, its power-law nature and strong
spatio-temporal correlation make the scaling analysis non-trivial.
This is in contrast to other random mobility models including
Brownian motion, random waypoint and i.i.d. mobility which are
amenable for a Markovian analysis. By exploiting the asymptotic
characterization of the joint spatio-temporal probability density
functions of Lévy models, the order of critical delay, the minimum
delay required to achieve more throughput than Θ(1/

√
n) where

n is the number of nodes in the network, is obtained. The results
indicate that in Lévy walk, there is a phase transition that for
0 < α < 1, the critical delay is constantly Θ(n1/2) and for
1 ≤ α ≤ 2, is Θ(nα/2). In contrast, Lévy flight has critical delay
Θ(nα/2) for 0 < α ≤ 2.

I. INTRODUCTION

Since the seminal work by Gupta and Kumar [1] on the ca-
pacity of wireless networks, delay and throughput tradeoffs of
wireless networks have been extensively studied under various
mathematical techniques, scheduling algorithms, channel mod-
els, mobility models and physical layer techniques. Among
them, arguably the most notable contribution is the work by
Grossglauser and Tse [2] showing that per-node throughput
remains constant (Θ(1)) when node mobility is used for
communication. This result is surprising because Gupta and
Kumar [1] showed that per-node throughput (O(1/

√
n)) in

wireless networks with no mobility diminishes as the number
of nodes n increases. This throughput gain is achieved at the
cost of larger delays.
The amount of delay that a network needs to sacrifice to

guarantee a given throughput has been studied under various
mobility models [3]–[6]. In particular, Sharma et al.[7] studied
the minimum delays required to achieve more throughput than
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Fig. 1. Sample trajectories of (a) BM, (b) Lévy walk and (c) RWP.

O(1/
√
n) under various mobility models including i.i.d., ran-

dom waypoint (RWP), random direction (RD) and Brownian
motion (BM). This minimum delay is called critical delay.
However, although the work is of high value in terms of
providing a framework for studying delay-capacity scaling for
wireless networks under a family of random walk models, the
practical values of these models are uncertain. While these
models are simple enough for mathematical tractability, they
do not reflect realistic mobility patterns commonly exhibited
in real mobile networks.
Humans are a big factor in mobile networks as most mobile

nodes or devices (smartphones and cars) are carried or driven
by humans. Recent studies [8]–[10] on human mobility show
that flight length distributions have a heavy-tail tendency
where flights are defined to be the longest straight line trip
of an object (e.g., particles or humans) from one location to
another without a directional change or pause. These mobility
patterns are well-modeled by Lévy process [11].
Lévy mobility is a random walk mobility with a power-

law flight distribution, 1/z1+α where z is a flight length and
0 < α ≤ 2. It also represents a random walk mobility with
just a heavy-tail flight distribution [11], [12]. Intuitively, such
a random walk contains many short flights and a small yet
significant number of exceptionally long flights. With different
values of α, the flight patterns of Lévy mobility models are
widely different. Smaller α induces a larger number of long
flights. This type of mobility patterns is significantly different
from Brownian motion and RWP as illustrated in Fig. 1. In
the literature, there are two types of Lévy mobility models:
Lévy flight (LF) and Lévy walk (LW). In Lévy flight, every
flight takes a constant time irrespective of its flight length and
in Lévy walk, it takes a constant velocity.
Unfortunately, understanding tradeoffs between throughput

and delay under Lévy mobility is technically very challenging
and underexplored. Unlike the other random walk models
permitting mathematical tractability, Lévy process is not very
well understood mathematically despite significant studies on
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Lévy process in mathematics and physics. Thus, the con-
ventional techniques [6], [7] used to study delay-capacity
tradeoffs cannot be applied to Lévy models, especially to Lévy
walk which has high spatio-temporal correlation. While Lévy
walk defies the discretization process required for Markovian
analysis, its mathematical characteristics of continuous Lévy
models such as the closed-form formulas for joint spatio-
temporal probability density function (PDF) are practically
unknown.
Our main contribution is to analytically derive the tradeoffs

between delay and capacity for both Lévy models. Our tech-
nique is unique in that we use the asymptotic characterization
of joint spatio-temporal PDF and diffusion equation of Lévy
models without solving their closed forms. As different α
induces different mobility patterns, it also induces different
delay-capacity tradeoffs. Below we summarize our main re-
sults.

Mobility α Critical Delay

Lévy walk α ∈ (0, 1) Θ(
√
n)

α ∈ [1, 2] Θ(nα/2)

Lévy flight α ∈ (0, 2] Θ(nα/2)

Given that many human mobility traces are shown to have
α between 0.53 and 1.81 [8], according to our results, mobile
networks assisted by human mobility have critical delays
between Θ(n0.27) and Θ(n0.91). Note that our results give
much more detailed prediction of critical delay for such mobile
networks depending on α while BM and RWP always show
Θ(n) and Θ(n0.5) for their critical delays [7].
The rest of the paper is organized as follows. We introduce

our system model in Section III and the Lévy mobility model
parameterized with α in Section IV and study critical delay
of Lévy-walk mobility in Section VI based on the preliminary
given in Section V. Finally, we provide a high level interpre-
tation and concluding remarks in Section VII.

II. RELATED WORK

Gupta and Kumar [1] showed that the per-node capacity
of random wireless networks with n static nodes scales as
a function of O(1/

√
n) and proposed a scheme achieving

Θ(1/
√
n logn). The result is later enhanced to Θ(1/

√
n) by

exercising individual power control [13], [14]. Grossglauser
and Tse [2] made a breakthrough by proving that a constant
per-node throughput is achievable by using mobility when
the nodes follow ergodic and stationary mobility models.
This disproves the conventional belief that node mobility can
negatively impact network capacity as it causes connectivity
breakup and channel quality degradation. It is later shown that
the gain comes at the cost of larger delay [5], [15].
Many follow-up studies[3]–[5], [15]–[19] have been devoted

to understand, characterize and exploit the tradeoffs between
throughput and delay. Especially, the delay required to obtain
the constant throughput Θ(1) has been later studied under
various mobility models [4], [18]–[21]. The key message is
that the delay of 2-hop relaying proposed in [2] is Θ(n) for
most mobility models such as i.i.d. mobility, random direction,
random waypoint and Brownian motion models. An important
question is how much delay needs to be increased to achieve

asymptotically higher throughput than Θ(1/
√
n). This has

been studied under the notion of critical delay [6], [7] for
two families of random mobility models: hybrid random walk
and random direction. Hybrid random walk splits the network
of size 1 with n2β cells and further splits a cell into n1−2β

subcells. Then, a node moves to a random subcell of an
adjacent cell in every unit time slot. In this model, i.i.d.
mobility corresponds to β = 0 and random walk mobility
corresponds to β = 1/2. For any β, critical delay is proved
to be Θ(n2β). Random direction chooses a random direction
within [0, 2π] and moves to the selected direction with a
distance of n−γ with a velocity n−1/2. In this model, random
waypoint (or random direction) and Brownian motion are
represented with γ = 0 and γ = 1/2, respectively. The critical
delay is proved as Θ(n1/2+γ).

III. MODEL DESCRIPTION

A. System Model

We consider a wireless mobile network indexed by n, where
in the n-th network, n nodes are distributed uniformly on a
completely wrapped-around square S whose width and height
scale as

√
n and density is fixed to 1 with increasing n.1 We

assume all nodes are homogeneous in that each node generates
data with the same intensity to a per-source destination. The
packet generation process at each node is assumed to be
independent of node mobility.
The source-to-destination packet delivery can be delivered

by either direct one-hop transmission or over multi-hops, say
k hops, using relay nodes. We call it k-hop relay transmission.
We assume that none of relay nodes generates packets.
To model interference in wireless networks, we use the

protocol model as in [1], [21], under which nodes transmit
packet successfully at a constant rate W bits/sec, if and only
if the following is met: for a transmitter i, a receiver j and
every other node k �= i, j transmitting currently,

d( �Xk(t), �Xj(t)) ≥ (1 + Δ)d( �X i(t), �Xj(t)), for Δ > 0,

where �X i(t) (∈ R
2) denotes node i’s location at time t and

d(x, y) denotes distance between two locations x, y.
A packet can be delivered through a scheduling scheme

which consists of replication or forwarding. We assume that
only source nodes replicate packets and all other relay nodes
forward them. As the names imply, replication copies a
packet and the packet transmitter keeps the packet, whereas in
forwarding the transmitter does not keep the original packet
after successful transmission. This selective replication and
forwarding depending on the node type are often applied to
suppress the overflow of redundant packets in the network.
Packets are delivered in two ways: neighbor capture and multi-
hop capture. In the neighbor capture, using mobility, relay or
source nodes are located within the communication range of
the destination. In multi-hop capture, a source establishes a
multi-hop path to the destination and delivers the packets over
the path. We assume a fluid packet model [21] so that the
delivery can occur immediately even in the case of multi-hop

1This model is often referred to as an extended model. In another model,
called a unit network model, the network area is fixed to 1 and density
increases as n while the spacing and velocity of nodes scale as 1/

√
n.
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capture because the transmission delay is negligible compared
to the delay from node mobility. We denote by Π the class of
all scheduling schemes conforming the descriptions above.

B. Performance Metrics

The primary performance metric in many networking sys-
tems is throughput measured by the long-term average of
received packets aggregated over nodes, defined as:
Definition 1 (Throughput): For a scheduling scheme π, the

throughput λπ is:

λπ � lim inf
t→∞

1

n

n∑
i=1

λiπ(t)

t
,

where λiπ(t) is the total number of bits received at a destination
node i up to time t.2

Another important metric is delay. LetDi,j
π be the individual

packet delay that a packet j experiences to arrive at a desti-
nation node i from its source under a scheduling scheme π.
The average delay of a scheme π is defined as:
Definition 2 (Average delay):

Dπ � lim
k→∞

1

n

n∑
i=1

1

k

k∑
j=1

Di,j
π .

We give special attention to the notion of critical delay CΠ,
first introduced in [7] and defined as:
Definition 3 (Critical delay): CΠ is the minimum average

delay that must be tolerated under a given mobility model to
achieve a per-node throughput of ω(1/

√
n), i.e.,

CΠ � inf
{π∈Π:λπ=ω(1/

√
n)}

Dπ.

Per-node throughput Θ(1/
√
n) is achievable by a schedul-

ing scheme in static multi-hop networks [1]. Since node mobil-
ity can increase throughput at the cost of larger delay, critical
delay quantifies the amount of delay that a network should
sacrifice to achieve the guaranteed “baseline” throughput. It
can be used as a simple, yet useful metric for a mobility model,
representing how sensitive the delay is to increase per-node
throughput.

IV. LÉVY MOBILITY MODEL

In this section, we formally define Lévy mobility model, and
explain the technical challenges that preclude the use of the
conventional techniques to our model, requiring us to take a
different approach to study critical delay.

A. Lévy Walk vs. Lévy Flight

Lévy walk and Lévy flight are separately treated in many
literatures [22]–[24]. Lévy flight takes a constant time for
every flight irrespective of the flight length of a flight whereas
Lévy walk takes a constant velocity for each flight. Thus, in
Lévy walk, it takes a flight time proportional to the flight
length. The distinction between Lévy walk and flight is often
made with their mobility speed. Lévy flight is a “fast” mobility
model in that the time taken for movement is comparable to the
packet transmission time in the multi-hop network. In a similar
context, Lévy walk falls into a “slow” mobility model. An

2For simplicity, we omit the subscript π in λπ unless confusion arises.

experimental velocity model suggested as a function of flight
length in [8] verifies that a human mobility lies in between
Lévy walk and Lévy flight. For convenience, we use Lévy
mobility model to indicate both of Lévy walk and Lévy flight,
unless explicitly stated.
Lévy mobility follows a Lévy distribution, expressed by the

Fourier transformation for its flight length Z (moving distance
of a single random walk), and its PDF is given by:

fZ,α(z) =
1

2π

∫ ∞

−∞
e−itz−|Ct|αdt,

where C is a scale factor and α is a distribution parameter. α
ranges over (0, 2] and determines the flight length distribution.
Lévy distribution for 0 < α < 1 has infinite variance and
mean, while the distribution for 1 ≤ α < 2 has infinite
variance but finite mean. Lévy mobility for α = 2 is Brownian
motion and has finite variance and mean. Due to the complex
form of the distribution, Lévy distribution is often given as a
power-law type of asymptotic form, closely approximating the
tail part of the distribution:

fZ,α(z) ∼ 1

z1+α
.

We assume that the flight length Z has a lower bound at
13 and no upper bound irrespective of network size which
is proportional to

√
n.

B. Challenges

There are two general techniques in studying critical delay
for random walk mobility models. One is to discretize mobility
and then apply a Markovian analysis [7], and the other is
to use continuous mobility models and solve directly the
diffusion equation to obtain joint spatio-temporal PDF [6].
Unfortunately, both techniques cannot be applied directly to
Lévy models. While the discretization of mobility models
may be applied to Lévy flight, the same cannot be applied to
Lévy walk because of high spatio-temporal correlation of Lévy
walk. While in Lévy flight, a node moves to its next destination
in a unit time (or a constant time), in Lévy walk, its travel
time depends on the distance to the next destination. This joint
spatio-temporal coupling makes the future motion of a Lévy
walker dependent on its past history. Thus, solving directly
the diffusion equation of Lévy walk is very challenging and
no mathematical solutions are yet available. Our approach is
to derive critical delay from an asymptotic characterization of
the joint spatio-temporal PDF without the exact solution.

V. PRELIMINARIES FOR CRITICAL DELAY

Computing critical delay consists of multiple steps. We
start by following the initial step in [6], [7] which connects
critical delay to the first exit time. Critical delay can simply
be regarded as the maximum time duration that a node cannot
exit from a disc of a radius Θ(

√
n) with probability 1. In

our extended network model, the average distance from a
source node to a destination node is Θ(

√
n) when they are

uniformly distributed over S. Therefore, if nodes travel up to
a distance Θ(

√
n), for a certain time duration, the distance

3Equivalently, the lower bound of flight length in the unit network model
is generally assumed to be 1/

√
n [7].
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between a source or a relay and a destination still remains
Θ(

√
n) on average which results in O(1/

√
n) throughput

(see Lemma 1). Thus, it is obvious that a network aiming
at obtaining ω(1/

√
n) throughput must allow a delay which

is no less than the maximum time duration that the first exit
of a node from a disc of a radius Θ(

√
n) does not occur with

probability 1. This insight is formally described as follows:

CΠ = sup
{
tn : lim

n→∞ P{T (rn) > tn} = 1, rn ∈ Θ(
√
n)
}
,

where T (l) denotes the first exit time for a disc of a radius l
and is defined as:
Definition 4 (First exit time): Let �X i(0) = x.

T (l) � inf{t ≥ 0 : �X i(t) /∈ B(x, l)},
where �X i(t) denotes the location of node i at time t and
B(x, l) denotes the set of points y in S such that d(x, y) ≤ l.
Lemma 1 ([1], [6]): Suppose that on average each packet

is relayed over a total distance no less than Θ(
√
n) in an

extended network model. Then λ = O(1/
√
n).

VI. CRITICAL DELAY ANALYSIS FOR LÉVY MOBILITY

In this section, we provide detailed analysis to obtain critical
delay for Lévy flight and Lévy walk. The first exit time anal-
ysis has been intensively studied in physics and mathematics.
Specifically, trapping phenomenon (of a diffusing particle) in
physics and its related theories have a direct connection to
our first exit time problem. Motivated by this, we regard a
mobile node as a diffusing particle in a finite interval [0, 2l]
with absorbing boundaries. Specifically the particle is assumed
to be positioned at x0 = l at time t = 0, and eventually the
particle is absorbed at either one of the end points. Then, the
first exit time is the time taken to reach either of the absorbing
boundaries.
Technical Approach. [6] obtains the first exit time distri-

bution from the joint spatio-temporal PDF of a node (called
occupation probability), which is well known and its closed-
form solution is available [25]. However, solving the occupa-
tion probability of Lévy walk is very challenging. Instead of
solving the occupation probability of Lévy walk, we decom-
pose the occupation probability of BM to find the components
constituting the occupation probability of BM and from this
decomposition process, we identify the dominating terms influ-
encing the first exit time. This is possible because the closed-
form expression of BM’s occupation probability is available.
Our key observation is that the occupation probabilities and
first exit time distributions of BM and Lévy model have similar
structures in terms of dominating terms. Fortunately, finding
the expression for the dominating terms for Lévy model is
technically tractable. This allows us to study the limiting
behavior of those dominating terms for Lévy model from
which we can obtain the critical delay of Lévy model.

A. Brownian Motion

In this section, we elaborate on how the critical delay
of BM can be obtained using the following three steps. (i)
The occupation probability is obtained from the solution of
a governing (differential or integral) equation. (ii) From this
probability, we obtain the survival probability (which will
be defined later), which in turn yields the first exit time

distribution. (iii) By investigating the limiting behavior of the
first exit time distribution, we can finally obtain the order of
critical delay.
Step 1: We first project each node’s position onto x-

axis and y-axis. We then define for the projected processes
{Xx

α(t)}t≥0 and {Xy
α(t)}t≥0 the first exit time similarly to

that in Definition 4:
Tα(l) � inf{t ≥ 0 : d( �Xα(t), �Xα(0)) ≥ l},
T x
α (l) � inf {t ≥ 0 : |Xx

α(t)−Xx
α(0)| ≥ l} ,

T y
α(l) � inf {t ≥ 0 : |Xy

α(t)−Xy
α(0)| ≥ l} .

(1)

Random variables T x
α (l) and T

y
α(l) represent the minimum

time taken to exit a distance l from the initial position.
Since the event {|Xx

α(t) − Xx
α(0)| ≥ l} implies the event

{d( �Xα(t), �Xα(0)) ≥ l}, we obtain
P{T x

α (l) ≤ t} ≤ P{Tα(l) ≤ t}. (2)

In addition, by the union bound and the symmetry of Lévy
mobility, we also obtain

P {Tα(l) ≤ t} ≤ P{T x
α(l/

√
2) ≤ t}+ P{T y

α(l/
√
2) ≤ t}

= 2P{T x
α (l/

√
2) ≤ t}. (3)

By substituting l = rn ∈ Θ(
√
n) into (2) and (3) and

combining (2) and (3), we have for all t ≥ 0,

P{T x
α(rn) ≤ t} ≤ P{Tα(rn) ≤ t} ≤ 2P{T x

α (rn/
√
2) ≤ t}.

(4)

Note that the above inequality holds for all α ∈ (0, 2].
Henceforth, we focus on the 1-D projected version of a 2-
D BM, which is also a BM [6].
Let P (x, t) denote the joint spatio-temporal PDF at position

x (∈ [0, 2l]) and time t (≥ 0). We call P (x, t) the occupation
probability. Then, P (x, t) is described by the following gov-
erning equation:

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
, (5)

where D (> 0) is a diffusion coefficient. For a finite system
x ∈ [0, 2l] with absorbing boundaries, Equation (5) is subject
to the boundary conditions P (0, t) = P (2l, t) = 0 ∀t ≥ 0.
Then, the solution of (5) is given by [25]:

P (x, t) =
∞∑
i=1

Ai sin

(
iπx

2l

)
exp

(
−
(
iπ

2l

)2

Dt

)
,

where Ai (i = 1, 2, . . .) are determined from the initial condi-
tion P (x, t = 0) = δx,x0

4 and are given by Ai =
1
l sin

(
iπ
2l x0

)
.

In our case of x0 � l, we have

P (x, t) =
1

l

∞∑
i=1

sin

(
iπ

2

)
sin

(
iπx

2l

)
exp

(
−
(
iπ

2l

)2

Dt

)
.

Step 2: Let S(t) be the probability that a node has not
hit any absorbing boundary by time t. We call S(t) the
survival probability. Then, the survival probability can be
obtained from the occupation probability P (x, t) by S(t) =∫ 2l

0 P (x, t)dx in general, and is given in the case of BM by

S(t) =
2

π

∞∑
i=1

1− cos(iπ)

i
sin

(
iπ

2

)
exp

(
−
(
iπ

2l

)2

Dt

)
.

4δi,j denotes the Kronecker delta, which is 1 if i = j and 0 otherwise.
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Note that the first exit time distribution can be obtained from
the survival probability through the relation P{T x

α(l) ≤ t} =
1 − S(t) in general. Hence, in the case of BM (i.e., α = 2),
the first exit time distribution can be expressed as an infinite
series of exponential functions as follows:

P{T x
2 (l) ≤ t} = 1−

∞∑
i=1

βi exp
(
− ρi
4l2

t
)
, (6)

where βi � 2{1−cos(iπ)}
iπ sin

(
iπ
2

)
and ρi � (iπ)2D.

Step 3: We are now ready to derive the main result of
this subsection. By using the closed-form expression for
P{T x

2 (l) ≤ t} in (6), we can investigate the order of critical
delay, stated in Lemmas 2 and 3.
Lemma 2 (Upper bound for BM): Suppose that time t in

P{T2(rn) ≤ t} scales as t � t̂n ∈ Θ(n1+ε) for some
ε > 0. Then, there does not exist any function E(n) such
that limn→∞ E(n) = 0 and

P{T2(rn) ≤ t̂n} ≤ E(n)
for rn ∈ Θ(

√
n).

Proof: We will prove this lemma by showing that
limn→∞ P{T x

2 (rn) ≤ t̂n} = 1. Then, from (4), we obtain

1 = lim
n→∞ P{T

x
2 (rn) ≤ t̂n} ≤ lim

n→∞ P{T2(rn) ≤ t̂n},
i.e., limn→∞ P{T2(rn) ≤ t̂n} = 1. Therefore, by contradic-
tion, no such functions E(n) with limn→∞ E(n) = 0 exist.
We substitute l = rn ∈ Θ(

√
n) into (6). Then, the series

on the right-hand side of (6) when t = t̂n becomes a function
of n, and (for notational convenience) we let

Ŝ(n) �
∞∑
i=1

βi exp

(
− ρi
4r2n

t̂n

)
=

∞∑
i=1

βi exp (−ĉρinε) (7)

for some constant ĉ > 0. We now need to take a limit to Ŝ(n).
Note that when taking a limit to a function in the form of an
infinite series, we need to interchange the order of limit and
summation. To validate this interchange, we will show that the
infinite series

∑∞
i=1 βi exp (−ĉρinε) converges uniformly on

D � [1,∞) by using the well-known Weierstrass M test [26].
The ith function βi exp (−ĉρinε) in (7) is bounded by a

constant Mi � 4
π{exp(−ĉπ2D)}i for all n ∈ D as follows:

|βi exp (−ĉρinε) | ≤ 4

π
exp(−ĉρi) ≤ 4

π
exp(−ĉiπ2D) =Mi,

where the first inequality comes from the bounds that |βi| ≤
4
π ∀i and exp(−ĉρinε) ≤ exp(−ĉρi) ∀i. In addition, the
series

∑∞
i=1Mi converges since it is a geometric series with

a common ratio exp(−ĉπ2D) ∈ (0, 1). Since the target of
the functions is a complete normed vector space, the infinite
series

∑∞
i=1 βi exp (−ĉρinε) converges uniformly on D and

consequently is continuous on D.
Therefore, due to continuity on D, we can interchange the

order of limit and summation, and we finally have

lim
n→∞P{T

x
2 (rn) ≤ t̂n} = 1− lim

n→∞ Ŝ(n)

= 1−
∞∑
i=1

βi lim
n→∞ exp (−ĉρinε) = 1,

which completes the proof. �

Lemma 3 (Lower bound for BM): Suppose that time t in
P{T2(rn) ≤ t} scales as t � t̃n ∈ Θ(n1−ε) for some ε > 0.
Then, there exists a function E(n) such that limn→∞ E(n) = 0
and

P{T2(rn) ≤ t̃n} ≤ E(n)
for rn ∈ Θ(

√
n).

Proof: We will prove this lemma by showing that
limn→∞ P{T x

2 (rn/
√
2) ≤ t̃n} = 0. Then, from (4), we obtain

lim
n→∞ P{T2(rn) ≤ t̃n} ≤ 2 lim

n→∞P{T
x
2 (rn/

√
2) ≤ t̃n} = 0,

i.e., limn→∞ P{T2(rn) ≤ t̃n} = 0, which is equivalent
to showing the existence of a function E(n) such that
P{T2(rn) ≤ t̃n} ≤ E(n) and limn→∞ E(n) = 0.
We substitute l = rn/

√
2 ∈ Θ(

√
n) into (6). Then, the

series on the right-hand side of (6) when t = t̃n becomes a
function of n, and analogous to the proof of Lemma 2, we let

S̃(n) �
∞∑
i=1

βi exp

(
− ρi
2r2n

t̃n

)
=

∞∑
i=1

βi exp
(−c̃ρin−ε

)
(8)

for some constant c̃ > 0. Similarly to the proof of Lemma 2,
we will show that the infinite series

∑∞
i=1 βi exp (−c̃ρin−ε)

is continuous on D = [1,∞).
For technical purposes, we restrict the domain of n as Dd �

[1, d] for an arbitrary d ≥ 1. Then, for all n ∈ Dd, the ith
function βi exp (−c̃ρin−ε) in (8) is bounded by a constant
Ni � 4

π{exp(−c̃π2Dd−ε)}i as follows:
|βi exp

(−c̃ρin−ε
) | ≤ 4

π
exp(−c̃ρid−ε) ≤ Ni.

In addition, the series
∑∞

i=1Ni converges since it is a geo-
metric series with a common ratio exp(−c̃π2Dd−ε) ∈ (0, 1).
Hence, the infinite series

∑∞
i=1 βi exp (−c̃ρin−ε) converges

uniformly on Dd and consequently is continuous on Dd. Since
d was arbitrary, we get continuity on D.
Due to continuity on D, we can interchange the order of

limit and summation, and we have

lim
n→∞ P{T

x
2 (rn/

√
2) ≤ t̃n} = 1− lim

n→∞

∞∑
i=1

βi exp
(−c̃ρin−ε

)

= 1−
∞∑
i=1

βi lim
n→∞ exp

(−c̃ρin−ε
)
= 1−

∞∑
i=1

βi.

Note from (6) that P{T x
2 (rn/

√
2) ≤ 0} = 1 −∑∞

i=1 βi. In
addition, it is clear that P{T x

2 (rn/
√
2) ≤ 0} = 0. Hence, we

have limn→∞ P{T x
2 (rn/

√
2) ≤ t̃n} = 0. This completes the

proof. �
By combining Lemmas 2 and 3, we can easily obtain the

following theorem.
Theorem 1: The critical delay under BM scales asΘ(n).
Two remarks are in order.
Remark 1:

• The main idea behind the proof of Lemmas 2 and 3
was that the smallest (i.e., dominant) decay constant in
the exponential functions (i.e., ρ1

4l2 in (6)) determines the
limiting behavior of the first exit time distribution. That
is, the smallest decay constant characterizes the critical
delay for BM.
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• Later we show that the first exit time distributions for
Lévy mobility models have similar forms as that of BM.
In the case of Lévy flight, the first exit time distribution
can be expressed as an infinite series of exponential
functions. In the case of Lévy walk, it can be expressed
as a sum of an exponential function and a remaining
term that decays faster than the exponential function. The
mathematical technique in this subsection is used to prove
that the dominant decay constant determines the order of
critical delay for Lévy mobility models.

B. Lévy Flight

We follow the three steps used in analyzing BM.
Step 1: We first project each node’s position onto x-axis

and y-axis. Then, the projected processes satisfy the following
property:
Lemma 4: For a given 2-D isotropic5 Lévy flight

{ �Xα(t)}t≥0 of parameter α, its 1-D projection processes onto
x-axis and y-axis (i.e., {Xx

α(t)}t≥0 and {Xy
α(t)}t≥0) are also

isotropic Lévy flights of parameter α.
Proof: Note that Xx

α(t) =
∑t

i=1 Zi cos θi and Xy
α(t) =∑t

i=1 Zi sin θi, where Zi and θi denote random variables
representing the ith flight length and direction, respectively.
Hence, it suffices to show that an arbitrary flight length of the
projected processes (i.e., |Zi cos θi| and |Zi sin θi|) follows a
power-law type distribution with exponent α. By conditioning
on the values of θi, we have the cumulative distribution
function for |Zi cos θi| as

P{|Zi cos θi| ≤ x} =

∫ 2π

0

P{|Zi cos θi| ≤ x | θi = y} dFθi(y)

=
1

2π

∫ 2π

0

P{|Zi cos y| ≤ x} dy, (9)

where the last equality follows from the independence of the
flight length Zi and direction θi. Since P{|Zi cos y| ≤ x} ∝
| cos y|α

xα , we have from (9) that

P{|Zi cos θi| ≤ x} ∝ 1

2πxα

∫ 2π

0

| cos y|αdy ∝ 1

xα
,

which shows that the process {Xx
α(t)}t≥0 is Lévy flight. A

noticeable result is that the 1-D projected version conserves
the same mobility parameter α as that of the 2-D version.
We can similarly prove P{|Zi sin θi| ≤ x} ∝ 1

xα , and thus
the process {Xy

α(t)}t≥0 is also Lévy flight of parameter α. �
Recall that Equation (4) holds for all Lévy mobility. Hence,

based on Lemma 4 and Equation (4), we focus on the
1-D Lévy flight in a finite interval [0, 2l] with absorbing
boundaries.
In contrast to BM, Lévy flight has the infinite second

moment. As a consequence, Lévy flight can be described
by using the fractional calculus [23] where the second order
spatial derivative in (5) is replaced by the fractional derivative
of order α with 0 < α < 2. That is, with continuous limit

5In general, an isotropic 2-D random walk refers to the walk that chooses
its direction uniformly over [0, 2π] at the beginning of each flight.

approximation [24], the occupation probability P (x, t) is gov-
erned by the following fractional Fokker-Planck equation [27]:

∂P (x, t)

∂t
= Dα

∂αP (x, t)

∂xα
, (10)

where Dα (> 0) is a scale factor. Analogous to the solution
of (5), the solution of (10) can be expressed as

P (x, t) =

∞∑
i=1

Aα,iψα,i(x) exp (−Dα|λα,i|t) , (11)

where Aα,i (i = 1, 2, . . .) are determined from the initial con-
dition P (x, t = 0) = δx,x0 and are given by Aα,i = ψα,i(x0).
The functions ψα,i(x) and the constants λα,i are solutions
of the problem Dα[ψα,i(x)] = λα,iψα,i(x) for the operator
Dα � ∂α

∂xα , and are called eigenfunctions and eigenvalues
of Dα, respectively. Without loss of generality, we assume
that λα,i are arranged as |λα,1| < |λα,2| < . . ..
In [27], Gitterman provided a solution of (10) which is

widely accepted in physics, e.g., [28]. The eigenfunctions are

given by ψα,i(x) =
√

1
l sin

(
iπx
2l

)
and the eigenvalues are

given by λα,i = − ( iπ2l )α. Here, the smallest (i.e., dominant)
decay constant |λα,1| scales as Θ(l−α). In [24], it is shown
that the average first exit time for Lévy flight of parameter α
with initial position x0 = l scales as Θ(lα), which induces
that the dominant decay constant |λα,1| scales as Θ(l−α).
Step 2: Similarly as done in Section VI-A, we can obtain

the first exit time distribution P{T x
α (l) ≤ t} by exploiting

its relation with the occupation probability P (x, t) and the
survival probability S(t) as follows:

P{T x
α (l) ≤ t} = 1− S(t) = 1−

∫ 2l

0

P (x, t)dx

= 1−
∞∑
i=1

βα,i exp (−Dα|λα,i|t) , (12)

where βα,i � ψα,i(x0)
∫ 2l

0
ψα,i(x)dx = 2

π
1−cos(iπ)

i sin( iπ2 ).
Step 3: We now derive the main result of this subsection.

By using the expression for P{T x
α(l) ≤ t} in (12), we can

investigate the order of critical delay, which is stated through
the following two subsequent lemmas.
Lemma 5 (Upper bound for LF): Suppose that time t in

P{Tα(rn) ≤ t} scales as t � t̂α,n ∈ Θ(n
α
2 +ε) for some

ε > 0. Then, there does not exist any function E(n) such that
limn→∞ E(n) = 0 and

P{Tα(rn) ≤ t̂α,n} ≤ E(n)
for rn ∈ Θ(

√
n).

Proof: Since the dominant decay constant |λα,1| scales as
Θ(l−α) = Θ(r−α

n ) = Θ(n−α
2 ), by using approaches in the

proof of Lemma 2, we can show that limn→∞ P{Tα(rn) ≤
t̂α,n} = 1. Therefore, by contradiction, no such functions E(n)
with limn→∞ E(n) = 0 exist. Due to similarities with the
proof of Lemma 2, we omit detailed derivations. �
Lemma 6 (Lower bound for LF): Suppose that time t in

P{Tα(rn) ≤ t} scales as t � t̃α,n ∈ Θ(n
α
2 −ε) for some ε > 0.

Then, there exists a function E(n) such that limn→∞ E(n) = 0
and

P{Tα(rn) ≤ t̃α,n} ≤ E(n)
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for rn ∈ Θ(
√
n).

Proof: Since the dominant decay constant |λα,1| scales as
Θ(l−α) = Θ(n−α

2 ), by using approaches in the proof of
Lemma 3, we can show that limn→∞ P{Tα(rn) ≤ t̃α,n} = 0.
This is equivalent to the existence of a function E(n) such
that P{Tα(rn) ≤ t̃α,n} ≤ E(n) and limn→∞ E(n) = 0. Due
to similarities with the proof of Lemma 3, we omit detailed
derivations. �
By combining Lemmas 5 and 6, we can easily obtain the

following theorem.
Theorem 2: The critical delay under Lévy flight of

parameter α scales as Θ(n
α
2 ).

In order to validate our derivations, we follow the technique
in [7] and derive the order of critical delay for the unit network
model. To apply the technique, we need to approximate Lévy
flight by truncating its flight length to the range [ 1√

n
, 1].

Lemma 7 summarizes the result for this approximated Lévy
flight model.
Lemma 7: The critical delay under approximated Lévy

flight of parameter α scales as Ω(n
α
2 ) for the unit network

model.
Proof: Due to the limited space, the proof is given in [29]. �
The above result in Lemma 7 is identical to the result in The-
orem 2, which partially verifies the validity of our derivation.

C. Lévy Walk

We begin with the description of differences between Lévy
flight and Lévy walk from the perspective of mathematical
modeling. It is clear that Lévy flight is of a class of discrete-
time Markov processes. In contrast to Lévy flight, the spa-
tiotemporal coupling of Lévy walk makes the future motion
of a Lévy walker dependent on its past trajectory. On the
other hand, at each turning point, the position of the next
turning point is chosen independently of the past trajectory.
Thus, Lévy walk is known to be of a class of semi-Markov
processes [22], and consequently it induces the following two
technical difficulties: (i) The technique by Sharma et al. in [7]
cannot be applicable because it requires decoupling of space
and time. (ii) The governing equation for the occupation prob-
ability P (x, t) should be described by integral equations rather
than differential equations used in BM and Lévy flight [22].
We again follow the three steps.
Step 1: The argument in the proof of Lemma 4 also shows

that, for a given 2-D isotropic Lévy walk, its 1-D projected
versions are also isotropic processes with the same flight
length distribution as that of the 2-D Lévy walk. However, the
velocity of the projected processes is not a constant for every
flight. Therefore, in contrast to Lévy flight, the 1-D projected
versions of the 2-D Lévy walk are not 1-D Lévy walks. In the
following lemma, we derive a relationship between the first
exit times for 2-D Lévy walk (i.e., Tα(rn)), 1-D projected
process (i.e., T x

α (rn)) and 1-D Lévy walk (i.e., T
1D
α (rn)).

Lemma 8: Fix α ∈ (0, 2). Then, for any η ∈ (0, 1) there ex-
ists δ = δ(η) ∈ (0, 1) such that P

{
T 1Dα (rn) ≤ (t− 2rn)δ

} −
1 + η ≤ P{T x

α(rn) ≤ t} ≤ P{Tα(rn) ≤ t} holds ∀n ∈ N.
Proof: Due to the limited space, the proof is given in [29]. �
By virtue of Lemma 8, we henceforth focus on a 1-D Lévy

walk in a finite interval [0, 2l] with absorbing boundaries. Let

Q(x, t) denote the probability that the Lévy walker changes
its direction at location x at time t. We call Q(x, t) the
turning point distribution. We show later that the turning point
distribution essentially determines the behavior of the occupa-
tion probability. By conditioning on Q(x, t), the occupation
probability P (x, t) can be expressed as follows [22]:

P (x, t) =
1

2

∫ 2l

0

∫ t

0

Q(x′, t′)

× P{Zα ≥ |x− x′|}δ(|x− x′| − v(t− t′))dt′dx′,

where v is a constant velocity of a Lévy walker and is
normalized to v � 1 without loss of generality. In [22], the
Laplace transform to the temporal domain was used to solve
the above integral equation, and it was shown that

P̂ (x, s) =
1

2

∫ 2l

0

Q̂(x′, s)

× P{Zα ≥ |x− x′|} exp(−s|x− x′|)dx′, (13)

where P̂ (x, s) �
∫∞
0

exp(−st)P (x, t)dt and Q̂(x, s) �∫∞
0

exp(−st)Q(x, t)dt are the Laplace transforms of P (x, t)
and Q(x, t) to the temporal domain, respectively.
Analogous to the solution (11), Q̂(x, s) can be expressed in

terms of eigenfunctions and eigenvalues as

Q̂(x, s) =

∞∑
i=1

Bα,i(s)
φα,i(x, s)

{ξα,i(s)}−1 − 1
,

where Bα,i(s) (i = 1, 2, . . .) are determined from the initial
condition Q(x, t = 0) = δx,x0 and are given by Bα,i(s) =
φα,i(x0, s). The functions φα,i(x, s) and the constants ξα,i(s)
are solutions of the problem Fα[φα,i(x, s)] = ξα,i(s)φα,i(x, s)

for the operator Fα[φ(x, s)] �
∫ 2l

0
exp(−s|x − x′|)fZ,α(x −

x′)φ(x′, s)dx′, and are called eigenfunctions and eigenvalues
of Fα, respectively.
To the best of our knowledge, closed-form formulas for

φα,i(x, s) and ξα,i(s) have not been explored to date. How-
ever, it was proved that Q̂(x, s) has a countably infinite set
of simple negative poles6 [22]. It can be seen from (13) that
P̂ (x, s) has the same poles as Q̂(x, s) since exp(−s|x− x′|)
has no poles. This shows that the pole with the smallest
absolute value, denoted by ηα,1 (> 0), determines the behavior
of the occupation probability P (x, t) for large t as follows:

P (x, t) ∝ exp(−ηα,1t).
In [22], ηα,1 is investigated and found to scale at large l as
Θ(l−1) for 0 < α < 1 and Θ(l−α) for 1 ≤ α < 2. In [24],
it is shown that the average first exit time for Lévy walk of
parameter α with initial position x0 = l scales as Θ(l) for
0 < α < 1 and Θ(lα) for 1 ≤ α < 2. This induces that
the smallest (i.e., dominant) pole ηα,1 scales as Θ(l−1) for
0 < α < 1 and Θ(l−α) for 1 ≤ α < 2.
Step 2: Similarly as in Sections VI-A and VI-B, we can

obtain the first exit time distribution P{T 1Dα (l) ≤ t} by
exploiting its relation with the occupation probability P (x, t)

6For a rational function f(s) =
N(s)
D(s)

, a pole s� is defined to be a value
such that D(s�) = 0. A pole of order 1 is called a simple pole.
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and the survival probability S(t) as follows:

P{T 1Dα (l) ≤ t} = 1− S(t) = 1−
∫ 2l

0

P (x, t)dx

= 1− cα exp (−ηα,1t) +Rα(t), (14)

where cα is a constant and Rα(t) denotes a remaining term
that decays faster (to zero) than the function exp(−ηα,1t).
Step 3:We now derive the main result of this subsection. By

using the expression for P{T 1Dα (l) ≤ t} in (14) and Lemma 8,
we can investigate the order of critical delay, which is stated
through the following two subsequent lemmas.
Lemma 9 (Upper bound for LW): Suppose that, for some

ε > 0, time t in P{Tα(rn) ≤ t} scales as t � t̂α,n ∈ Θ(n
1
2+ε)

for α ∈ (0, 1) and t � t̂α,n ∈ Θ(n
α
2 +ε) for α ∈ [1, 2).

Then, there does not exist any function E(n) such that
limn→∞ E(n) = 0 and

P{Tα(rn) ≤ t̂α,n} ≤ E(n)
for rn ∈ Θ(

√
n).

Proof: We will prove this lemma by showing that
limn→∞ P{T 1Dα (rn) ≤ (t̂α,n − rn)δ} = 1. Then, from
Lemma 8, we obtain limn→∞ P{Tα(rn) ≤ t̂α,n} ≥ η > 0.
Therefore, by contradiction, no such functions E(n) with
limn→∞ E(n) = 0 exist.
We first consider the case of 0 < α < 1 and substitute l =

rn ∈ Θ(
√
n) into (14). Since l scales as Θ(

√
n), ηα,1 scales

as Θ(l−1) = Θ(n− 1
2 ) in this case. Hence, the exponential

function on the right-hand side of (14) when t = t̂α,n becomes
cα exp(−ηα,1t̂α,n) = cα exp(−ĉαnε) for some constant ĉα >
0, and accordingly we have in the limit

lim
n→∞ cα exp(−ηα,1t̂α,n) = lim

n→∞ cα exp(−ĉαnε) = 0. (15)

Since the remaining term Rα(t) approaches faster to zero
than exp(−ηα,1t), we have in the limit limn→∞ |Rα(t̂α,n)| ≤
limn→∞ exp(−ηα,1t̂α,n) = 0, from which we obtain

lim
n→∞Rα(t̂α,n) = 0. (16)

By combining (15) and (16), we obtain limn→∞ P{T 1Dα (rn) ≤
t̂α,n} = 1 for any t̂α,n ∈ Θ(n

1
2+ε). Note that we still have

(t̂α,n − 2rn)δ ∈ Θ(n
1
2+ε) since δ > 0 is fixed as a constant

(regardless of n) and rn ∈ Θ(n
1
2 ). Therefore we finally obtain

limn→∞ P{T 1Dα (rn) ≤ (t̂α,n − rn)δ} = 1.
In the case of 1 ≤ α < 2, we can prove similarly as above

and omit detailed derivations. �
Lemma 10 (Lower bound for LW): Suppose that, for some

ε > 0, time t in P{Tα(rn) ≤ t} scales as t � t̃α,n ∈ Θ(n
1
2−ε)

for α ∈ (0, 1) and t � t̃α,n ∈ Θ(n
α
2 −ε) for α ∈ [1, 2). Then,

there exists a function E(n) such that limn→∞ E(n) = 0 and

P{Tα(rn) ≤ t̃α,n} ≤ E(n)
for rn ∈ Θ(

√
n).

Proof:We will prove this lemma by specifying functions E(n)
that satisfy limn→∞ E(n) = 0 and P{Tα(rn) ≤ t̃α,n} ≤ E(n)
for each of the cases of 0 < α < 1 and 1 ≤ α < 2.
We first consider the case of 0 < α < 1. Since a Lévy

walker moves with a constant velocity v = 1, it takes at least
rn ∈ Θ(

√
n) time to exit from a disc of a radius rn. Therefore,

it is obvious that P{Tα(rn) ≤ t̃α,n} ≤ P{Tα(rn) < rn} = 0.

(a) Lévy walk (b) Lévy flight

Fig. 2. Critical delays of Lévy walk and Lévy flight mobility models for
different α.

By choosing E(n) � 0 ∀n, we have proved the lemma in the
case of 0 < α < 1.
We next consider the case of 1 ≤ α < 2. Since Lévy flight

takes a constant time for each flight whereas Lévy walk takes a
constant velocity, we have with probability 1 that Tα,LF(rn) ≤
Tα,LW(rn), where the subscripts LF and LW are added to
the definition (1) to distinguish the first exit times between
Lévy flight and Lévy walk. In addition, from Lemma 6, there
exists a function ELF(n) such that limn→∞ ELF(n) = 0 and
P{Tα,LF(rn) ≤ t̃α,n} ≤ ELF(n). We choose E(n) � ELF(n)
for 1 ≤ α < 2. Then, P{Tα,LW(rn) ≤ t̃α,n} ≤ P{Tα,LF(rn) ≤
t̃α,n} ≤ ELF(n) = E(n), where the first inequality comes from
the property that Tα,LF(rn) ≤ Tα,LW(rn). This completes the
proof. �
By combining Lemmas 9 and 10, we can obtain the follow-

ing theorem.
Theorem 3: The critical delay under Lévy walk of pa-

rameter α scales as Θ(n
1
2 ) for 0 < α < 1 and Θ(n

α
2 ) for

1 ≤ α < 2.

VII. CONCLUDING REMARKS

We summarize the high-level interpretations of this paper.
Fig. 2 shows the critical delay of Lévy walk and Lévy flight,
parameterized by α. Lévy flight shows that critical delay
proportionally increases with α. However, in Lévy walk, we
can find a phase transition that for 0 < α < 1, the critical
delay is constantly Θ(n1/2) and shifts to the proportional
increasing phase for 1 ≤ α ≤ 2. Two different scaling regions
are essentially related to the fact that the mean flight length of
Lévy walk for 0 < α < 1 is infinite but finite for 1 ≤ α ≤ 2.
In contrast to Lévy walk, the travel time independence of flight
length in Lévy flight leads to continuous scaling over α. Note
that for α = 2 (i.e., BM) our result coincides with that in [7]
which also studied the critical delay of BM.
Our results can take α from experimental measurements

from [8], to determine how the network delay with human
mobility scales in practice. To give insight to the readers, we
show α values measured from five different sites in Table I
presented in [8] with a flight extraction method, “rectangle”
7. We see that critical delays for human mobility range from

7We do not present α values from other extraction methods in [8] which
intentionally exclude some detailed motions of real traces. To capture specific
behaviors of humans, one can borrow those α values.
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TABLE I
EXPERIMENTALα VALUES FOR DIFFERENT SITES PRESENTED IN [8].

Site α Site α

KAIST 0.53 New York City 1.62
NCSU 1.27 Disney World 1.20

State fair 1.81

Θ(n0.27) to Θ(n0.91). Human mobility mainly have α > 1,
which necessitates longer delay than Θ(

√
n), the average delay

for static multi-hop networks with a constant packet size where
the average delay is larger than critical delay by definition.
This implies that it may be hard to design a low delay protocol
for mobile networks under human mobility.
Our contribution is not restricted to the mathematical deriva-

tion of delay scaling for new mobility models. We also
provided a technique that connects the diffusion equation of
a continuous time random walk process to the delay scaling.
This technique can be extended to the analysis of other detailed
metrics, e.g., end-to-end delay distribution of flows.
Future work includes investigation of performance scaling

for mobile networks with heterogeneous and collective node
mobilities. In addition to the recent research topics on “per-
node throughput scaling” under inhomogeneous spatial node
distributions (i.e., Cox process, Neyman-Scott process, Matérn
cluster process and Thomas process), e.g., [30], [31], our paper
can be an important step to the study of delay scaling under
such heterogeneous networks. There is an insight from [9] that
in human-assisted networks, the actual delays might be even
shorter. This is because people’s mobility is not completely
random: people tend to visit the same locations and meet a
similar set of people every day. Although their mobility can
be characterized by heavy-tail distributions, these regularity
in daily mobility of people could make it much easier to
route packets among people (as long as they are socially
connected). Therefore, there remains a possibility of designing
a low delay protocol for mobile networks under heterogeneous
human mobility by judiciously utilizing these social factors.
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