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Abstract—It has been recently suggested by Jiang and Walrand
[25] that adaptive carrier sense multiple access (CSMA) can
achieve optimal utility without any message passing in wireless
networks. In this paper, a generalization of this algorithm is
considered. In the continuous-time model, a proof is presented of
the convergence of these adaptive CSMA algorithms to arbitrarily
close to utility optimality, without assuming that the network
dynamics freezes while the CSMA parameters are updated. In
the more realistic, slotted-time model, the impact of collisions on
the utility achieved is characterized, and the tradeoff between
optimality at equilibrium and short-term fairness is quantified.

I. INTRODUCTION

Design of distributed scheduling algorithms in wireless
networks has been extensively studied under various metrics
of efficiency and fairness. In their seminal work [1], Tassiulas
and Ephremides developed a centralized scheduling algorithm,
Max-Weight scheduling, achieving throughput optimality, i.e.,
stabilizing any arrival for which there exists a stabilizing
scheduler. Since then, there has been a large array of lower-
complexity, more distributed scheduling algorithms, using the
ideas of randomization (pick-and-compare scheduling), weight
approximation (maximal/greedy scheduling), or random access
with queue-length exchanges, e.g., [2]–[11], to achieve large
stability region under unsaturated arrivals of traffic at each
node in the network. For saturated arrivals, optimizing a
utility function, which captures efficiency and fairness at the
equilibrium, has been studied for slotted-Aloha random access,
e.g., [12]–[17]. Together with the principle of Layering as Op-
timization Decomposition, advances in scheduling have also
been translated into improvements in joint congestion control,
routing, and scheduling over multihop wireless networks, e.g.,
[18]–[21]. There are many more studied in this topic, as
discussed in more detail in surveys such as [22].

A main bottleneck that remains is the need for message
passing. Tradeoffs of the time complexity of message pass-
ing with throughput and delay have been studied recently
in [6], [7], [23], [24]. Message passing reduces “effective”
performance, is vulnerable to security attacks, and makes the
algorithms not fully distributed. This naturally leads to the
following question on simplicity-driven design: Can random
access without message passing approach some type of perfor-
mance optimality? The answer was suggested to be positive
last year, first in [25] for wireless network, with a similar
development in a different context in [26]. Convergence proof
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and tradeoff were presented in [27], based on which this paper
is developed.

In [28]–[30], it has been shown that even non-adaptive
carrier sense multiple access (CSMA) algorithms, where each
link accesses the channel with a fixed probability, are able
to provide average throughput close to optimality. Turning to
random access with adaptive channel access rate, a simulated-
annealing based approach was proposed in [31]. A similar
idea has been developed recently in [26], [32] for queue
stability with unsaturated arrivals: users can adapt their access
channel rate depending on their queue size, so that the system
dynamics under the random CSMA algorithm solves the Max-
Weight problem. As discussed in [29], one issue is that when
the buffer of a given user becomes large, its channel access
rate should also become large. Consequently, to ensure queue
stability and to control the system behavior for arbitrarily large
buffers, one needs to design a CSMA protocol with arbitrarily
large access rates. This is made possible in [26], [32] by
implementing idealized continuous-time CSMA algorithms,
where Poisson clocks are used to control the channel accesses,
and to ensure zero collisions. By simply limiting the virtual
buffer sizes, the problem of large buffers and stability in the
implementation of the simulated annealing technique may be
avoided1.

In [25], utility optimality for saturated arrivals (or, rate
stability for unsaturated arrivals) is studied, also leveraging the
simulated annealing technique. An adaptive CSMA algorithm,
without message passing, is developed to maximize utility
in the idealized continuous-time model. More recently, [33]
proposed an algorithm that is asymptotically optimal in the
slotted-time model, by using RTS/CTS-like message passing.
More on slotted-time models will be discussed in Section IV.

The contributions of this paper are as follows:
1) We first extend the algorithms in [25], and develop a rigor-

ous proof of the convergence of these algorithms, without
assuming that the network dynamics freeze while the
CSMA parameters are being updated, for the continuous-
time Poisson clock model. New proof techniques are de-
veloped to overcome the difficulty of the coupling between
the control of CSMA parameters and the queueing network
dynamics.

2) We then turn to the more realistic discrete-time contention
and backoff model, and quantify the effect of collisions.
We reveal and characterize the tradeoff between long-

1The algorithm in [32] requires message passing to reach consensus on
maximum queue length in the network in order to achieve maximum queue
stability.
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term efficiency and short-term fairness: short-term fairness
decreases exponentially as efficiency loss is reduced. Sim-
ilarly to other distributed scheduling algorithms, there is
a 3-dimensional tradeoff [23]: the price of optimality and
zero message passing here is delay experienced by some
nodes.

The rest of this paper is organized as follows: In Section II,
we describe the system model and the Utility-Optimal CSMA
(UO-CSMA) )algorithms, followed by the formal convergence
proof in Section III. In Section IV, we study the impact
of collisions in the discrete-time model, and quantify the
tradeoff between long-term efficiency and short-term fairness.
We conclude with a list of future directions on this topic in
Section V.

II. MODELS AND ALGORITHMS

A. Network and interference model

We consider a wireless network composed by a set L of L
links. Interference is modeled by a symmetric, boolean matrix
A ∈ {0, 1}L×L, where Akl = 1 if link k interferes link l, and
Akl = 0 otherwise. Define by N ⊂ {0, 1}L the set of the
N feasible link activation profiles, or schedules. A schedule
m ∈ N is a subset of non-interfering active links (i.e., for any
m ∈ N , k, l ∈ m, Akl = 0). We assume that the transmitters
can transmit at a fixed unit rate when active.

B. Scheduling and utility maximization

The network is assumed to handle single-hop data con-
nections. However, the results presented here can be easily
extended to multi-hop connections (e.g., using classical back-
pressure ideas [1]). The transmitter of each link is saturated,
i.e., it always has packets to send. A scheduling algorithm
decides at each time which links are activated. Denote by
γs = (γs

l , l ∈ L) the long-term throughputs achieved by
scheduling algorithm s. The throughput vector of any schedul-
ing algorithm has to belong to the rate region Γ defined by

Γ = {γ ∈RL
+ : ∃π ∈ RN

+ ,

∀l ∈ L, γl ≤
∑

m∈N :ml=1

πm,
∑

m∈N

πm = 1}.

In the above, for any schedule m ∈ N , πm can be interpreted
as the proportion of time schedule m is activated. As is a
standard in problems with saturated arrivals, the objective is to
design a scheduling algorithm maximizing the total network-
wide utility. Specifically, let U : R+ → R be an increasing,
strictly concave, differentiable objective function. We wish
to design an algorithm to solve the following optimization
problem:

max Σl∈LU(γl), (1)
s.t. γ ∈ Γ.

We denote by γ⋆ = (γ⋆
l , l ∈ L) the optimizer of (1). Most

distributed schemes proposed in the literature to date to solve
(1) make use of a dual decomposition of the problem into a rate
control and a scheduling problem: A virtual queue is associ-
ated with each link; a rate control algorithm defines the rate at

which packets are sent to the virtual queues, and a scheduling
algorithm decides, depending on the level of the virtual queues,
which schedule to use with the aim of stabilizing all virtual
queues. The main challenge reduces to developing a distributed
and efficient scheduling algorithm. Many solutions proposed
so far are semi-distributed implementations of the max-weight
scheduler introduced in [1], and require information about
the queues to be passed around among the nodes or links
(e.g., see a large set of references in [22]). This signaling
overhead increases communication complexity and reduces
effective throughput.

C. Efficiency of CSMA
CSMA-based random access is the most popularly used

distributed scheduling algorithms in wireless networks. They
are based on random back-off algorithms such as the De-
centralized Coordinated Function (DCF) in IEEE802.11. The
two basic principles behind CSMA schemes are (i) to detect
whether the channel is busy before transmitting, and to refrain
from starting a transmission when the channel is sensed
busy, and (ii) to wait a random period of time before any
transmission to limit the probability of collisions.

The network dynamics under CSMA have been extensively
studied in the literature. The following popular model is
due to Kelly [34], and has been recently revisited by e.g.
[28], [30]. In this model, the transmitter of link l waits an
exponentially distributed random period of time with mean
1/λl before transmitting, and when it initiates a transmission,
it keeps the channel for an exponentially distributed period
of time with mean µl. This CSMA algorithm is denoted by
CSMA(λl, µl) in the rest of the paper. Define λ = (λl, l ∈ L)
and µ = (µl, l ∈ L). When each link l runs CSMA(λl, µl),
the network dynamics can be captured through a reversible
process [35]: If mλ,µ(t) denotes the active schedule at time t,
then (mλ,µ(t), t ≥ 0) is a continuous-time reversible Markov
chain whose stationary distribution πλ,µ is given by

∀m ∈ N , πλ,µ
m =

∏
l:ml=1 λlµl∑

n∈N
∏

l:nl=1 λlµl
,

where by convention
∏

l∈∅(·) = 1. It is worth noting that
due to the reversibility of the process, the above stationary
distribution does not depend on the distributions of the back-
off durations or of the channel holding times, provided that
they are of mean 1/λl and µl, respectively, for link l. This in-
sensitivity property allows us to cover a more realistic scenario
with uniformly distributed back-off delays and deterministic
channel holding times.

Under the above continuous-time model, collisions are
mathematically impossible, leading to tractability as a first
step of the study. In practice, however, time is slotted and the
back-off periods are multiple of slots, which inevitably causes
collisions. The impact of collisions is discussed in details in
Section IV.

Under the CSMA(λl, µl)’s algorithms, the link throughputs
are given by:

∀l ∈ L, γλ,µ
l =

∑
m∈N :ml=1

πλ,µ
m .



3

An important result, proved in [25] (Propositions 1 and 2),
states that any throughput vector γ ∈ Γ can be approached
using CSMA(λ,µ) algorithms. More precisely, we have:

Lemma 1 ( [25]): For any γ in the interior of Γ, there exist
λ, µ ∈ RL

+ such that

∀l ∈ L, γl ≤ γλ,µ
l .

The above lemma expresses the optimality of CSMA
scheduling schemes, and it suggests that for approaching the
solution of (1), one may use CSMA algorithms.

D. Utility-optimal adaptive CSMA algorithms

We now describe a generic adaptive CSMA-based algorithm
to approximately solve (1). The algorithm is an extension of
those proposed in [25], and does not require any message
passing. Time is divided into frames of fixed durations, and
the transmitters of each link update their CSMA parameters
(i.e., λl, µl for link l) at the beginning of each frame. To do
so, they maintain a virtual queue, denoted by ql[t] in frame
t, for link l. The algorithm operates as follows:

UO-CSMA

1) During frame t, the transmitter of link l runs
CSMA(λl[t], µl[t]), and records the amount Sl[t] of ser-
vice received during this frame;

2) At the end of frame t, it updates its virtual queue and its
CSMA parameters according to:

ql[t+1] =
[
ql[t]+

b[t]
W ′(ql[t])

(
U ′−1(

W (ql[t])
V

)−Sl[t]
)]qmax

qmin

,

and sets λl[t + 1] and µl[t + 1] such that their product is
equal to exp{W (ql[t + 1])}.

In the above algorithm, b : N → R is a step size function;
W : R+ → R+ is a strictly increasing and continuously differ-
entiable function, termed the weight function; V , qmin, qmax(>
qmin) are positive parameters, and [·]dc ≡ max(d, min(c, ·)).
We will later see that proper choice of b ensures convergence.
V controls the accuracy of the algorithm, and the function W
controls the transient behavior.

Since the performance of CSMA algorithms depends on
the products λlµl only, we have the choices in UO-CSMA to
either update the λl’s (the transmission intensities) and fix the
µl’s (the transmission durations), or to update the µl’s and fix
the λl’s, or to update both the λl’s and µl’s.

III. CONTINUOUS-TIME MODEL: CONVERGENCE PROOF

UO-CSMA may be interpreted as a stochastic approxi-
mation algorithm [36]. The main difficulty in analyzing the
convergence of UO-CSMA lies in the fact that the updates
in the virtual queues, and hence in the CSMA parameters,
depend on the random service processes (Sl[t], t ≥ 0). The

service processes (Sl[t], l ∈ L) received by the various links
in turn depend on the state of the network at the end of frame
t− 1, and on the updated CSMA parameters (λ[t], µ[t]). The
convergence proof would have been much simpler if we could
assume that the network dynamics freeze in between CSMA
parameter updates.

As we will demonstrate, it is possible to represent UO-
CSMA as a stochastic approximation algorithm with con-
trolled Markov noise (see Borkar [37]). For any vector q ∈ NL,
we denote by πq the distribution on N resulting from the
dynamics of the CSMA(λl, µl) algorithms, where for all
l ∈ L, λlµl = exp(W (ql)). In other words,

∀m ∈ N , πq
m =

exp(
∑

l∈m W (ql))∑
m′∈N exp(

∑
l∈m′ W (ql))

. (2)

To prove the convergence of UO-CSMA, we will need the
following assumption.

Assumption 1: If q0 ∈ RL
+ solves W (q0

l ) =
V U ′(

∑
m:ml=1 πq0

m ), then for all l ∈ L, qmin ≤ q0
l ≤ qmax,

for all l ∈ L.

Note that for example, if the utility function U is such that
U ′(0) < +∞, then Assumption 1 is satisfied when qmin ≤
W−1(V U ′(1)) and qmax ≥ W−1(V U ′(0)). The next theorem
states the convergence of UO-CSMA under diminishing step-
sizes, towards a point that is arbitrarily close to the utility-
optimizer.

Theorem 1: Assume
∑∞

t=0 b[t] = ∞, and
∑∞

t=0 b[t]2 < ∞.
Under Assumption 1, for any initial condition q[0], UO-CSMA
converges in the following sense:

lim
t→∞

q[t] = q⋆ and lim
t→∞

γ[t] = γ⋆, almost surely,

where γ⋆ and q⋆ are such that (γ⋆,π
q⋆) is the solution of the

following convex optimization problem (over γ and π):

max V Σl∈LU(γl) − Σm∈Nπm log πm

s.t. γl ≤ Σm∈N :ml=1πm, Σm∈Nπm = 1. (3)

Furthermore UO-CSMA approximately solves (1) as:∣∣Σl∈L
(
U(γ⋆,l) − U(γ⋆

l )
)∣∣ ≤ log |N |/V . (4)

Proof. Recall that γ⋆
l is the solution of (1), and γ⋆,l is the

converging point of UO-CSMA. In a first step, we show that
in UO-CSMA, the random services Sl[t]’s achieved under the
CSMA algorithms can be averaged - as if the frame t was long
enough so that the Sl[t]’s reach their ergodic averages. We also
show that the evolutions of the CSMA parameters λl[t], and
µl[t] asymptotically approach to deterministic trajectories (see
Lemma 2). In the second step, we prove that the resulting
averaged algorithm converges to the solution of (3). The latter
step follows the approach used in [25]. The main contribution
in our proof is in Step 1 and Lemma 2.
Step 1. From the discrete-time sequence (q[t], t ≥ 0), we
define a continuous function q̄(·) as follows. Define for all
n, tn =

∑n
i=1 b[i], and for all for all tn < t ≤ tn+1,

q̄l(t) = ql[n] + (ql[n + 1] − ql[n]) ×
( t − tn

tn+1 − tn

)
. (5)
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Lemma 2 (Convergence and averaging): Fix τ > 0. De-
note by q̃ the solution of the following system of ordinary
differential equation (o.d.e.’s): for all l ∈ L,

dq̃l/dt =

[
U ′−1

(
Wl(q̃l)/V

)
−

∑
m∈N :ml=1

πq̃(m)

]

×
1{qmin≤q̃l≤qmax}

W ′(q̃l)
, (6)

with q̃(τ) = q̄(τ). Then we have that for all T > 0,

lim
τ→∞

sup
t∈[τ,τ+T ]

∥q̄(t) − q̃(t)∥ = 0 a.s. (7)

Lemma 2 shows that the trajectory of the continuous inter-
polation q̄ of the sequence of the virtual queues q asymptoti-
cally approaches that of q̃. Note that in the limiting o.d.e.’s, the
service Sl[t] received on each link is averaged with respect to
(w.r.t) the stationary distribution πq̃(t) (as if the virtual queues
were frozen). Proving this averaging property constitutes the
key challenge in analyzing the convergence of UO-CSMA.

Proof of Lemma 2. We attach to each link l a variable
al[t], where al[t] = 1 if the link is active at time t (at the
end of slot t), and 0 otherwise. Now it can be easily seen
that Y [t] = (S[t], a[t]) is a non-homogeneous Markov chain
whose transition kernel between times t and t+1 depends on
q[t] only. Now the updates of the virtual queues in UO-CSMA
can be written as:

ql[t + 1] = ql[t] + b[t] × h(ql[t], Yl[t]),

where

h(q, Y ) =
1

W ′(q)
(U ′−1(W (q)/V ) − S)) · 1{qmin≤ql≤qmax},

and where Y = (S, a). As a consequence, UO-CSMA can be
seen as a stochastic approximation algorithm with controlled
Markov noise as defined in [37], [38]. To complete the proof of
Lemma 2, we check the sufficient conditions for convergence
provided in [38]:
1) The transition kernel of Y [t], parametrized by q[t], is
continuous in q[t] (because the transition rates from one state
to another are determined by the λl[t]’s and µl’s, which are
continuous in the ql[t]’s). Note also that fixing q[t] = q0 for
all time t, the obtained Markov chain Y [t] is ergodic (its state-
space is finite and it is irreducible) with stationary distribution
πq0 .
2) h is continuous and Lipschitz in the first argument, uni-
formly in the second argument. This can be easily checked,
given the properties of the utility and weight functions U and
W and observing that we restrict our attention to the compact
set [qmin, qmax].
3) Stability condition: ql[t] ≤ qmax for all l ∈ L and t ≥ 0.
4) Tightness condition (corresponding to (†) in [38][p. 71]):
This is satisfied since Y [t] has a finite state-space (cf. condi-
tions (6.4.1) and (6.4.2) in [38][pp.76]). 2

In view of Lemma 2, if there exists an equilibrium q⋆

such that limt→∞ q̃(t) = q⋆, then we would also have
limt→∞ q[t] = q⋆ a.s. (this can be shown as in [39]).

Step 2. To complete the convergence proof, we show as in
[25] that (6) may be interpreted as a sub-gradient algorithm
(projected on a bounded interval) solving the Lagrange dual
problem of (3). Let D(ν, η) denote the dual function of (3).
Then we show that (6) is the sub-gradient algorithm of:

min D(ν, η), s.t. νmin ≤ νl ≤ νmax, ∀l ∈ L. (8)

Here we include the upper-bound νmax (resp. lower-bound
νmin) that corresponds to the limitation of the ql’s: νmax =
W (qmax) (resp. νmin = W (qmin)). The Lagrangian of (3) is
given by

L(γ, π; ν, η) =
(
Σl∈LV log γl − νlγl

)
+
(
Σl∈LνlΣm∈N :ml=1πm

− Σm∈Nπm log πm

)
+ η
(
Σm∈Nπm − 1

)
.

Then the Karush-Kuhn-Tucker (KKT) conditions of (3) are
given by

V U ′(γl) = νl, ∀l ∈ L, (9)
−1 − log πm + Σl:ml=1νl + η = 0, ∀m ∈ N , (10)
νl ×

(
γl − Σm∈N :ml=1πm

)
= 0, (11)

η × (
∑

m∈N

πm − 1), (12)

∀l ∈ L, νl ≥ 0. (13)

The sub-gradient of (9) (when accounting for (11)) is:

dνl/dt =
(
U ′−1

(
νl/V

)
− Σ m∈M

:ml=1
πq̃

m

)
· 1{νmin≤νl≤νmax}.

(14)
Eq. (14) is equivalent to (6) when νl = W (q̃l) for all
l ∈ L, provided that the solution ν⋆ = (ν⋆,l, l ∈ L) of (8)
without the constraints νmin ≤ ν ≤ νmax actually belongs
to the interval [νmin, νmax]. The latter condition is satisfied
in view of Assumption 1. Since (8) is a strictly convex
optimization problem, (14) converges to its unique equilibrium
ν⋆, and hence (6) converges to q⋆ such that for all l ∈ L,
W (q⋆,l) = ν⋆,l. Finally, (10) and (12) are solved for π = πq⋆

and

η = 1 − log

(∑
m∈N

exp(
∑

l∈L:ml=1

W (q⋆,l))

)
.

To prove the inequality (4), we just remark that (1) is
equivalent to the following optimization problem:

max V Σl∈LU(γl)
s.t. γl ≤ Σm∈N :ml=1πm, Σm∈Nπm = 1. (15)

Eq. (4) is obtained by comparing (3) and (15), and using the
fact that the entropy

∑
m πm log πm is always bounded by

log |N |. The proof of Theorem 1 is complete. 2

Under the assumption of Theorem 1, the CSMA parameters
of the various transmitters ((λl[t], µl[t]), l ∈ L) are such
that their products (λl[t]µl[t], l ∈ L) converge to (ρ⋆,l =
exp(W (q⋆,l)), l ∈ L) almost surely when t → ∞, and the
limiting products are characterized by the following set of
equations: For all l ∈ L,

U ′−1

(
log(ρ⋆,l)

V

)
=

∑
m:ml=1

∏
j∈m(ρ⋆,j)∑

m∈N
∏

j∈m(ρ⋆,j)
(= γ⋆,l).
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From these equations, we deduce that increasing V tends to
increase the ρ⋆,l’s which in turn improves the efficiency of the
algorithm. The downside of large V is slower convergence.

IV. SLOTTED-TIME MODEL: COLLISION AND TRADEOFF

In the previous section, we have analyzed the convergence
of UO-CSMA in the ideal continuous-time setting where
collisions are made mathematically impossible. In practical
implementaions, however, time is slotted and collisions may
occur. We consider the following model for the slotted CSMA:
The transmitter of link l starts a transmission at the end of a
slot with probability pl if the slot has been sensed idle. When
a link is active, it can experience either a successful trans-
mission or a collision. When a link is currently successfully
transmitting, it releases the channel with probability 1/µl at
the end of a slot. In the case of a collision, interfering links
involved in the collision all stop to transmit simultaneously.

We consider two types of collisions:
(a) Short collisions. The links involved in a collision all re-

lease the channel with probability 1/µ at the end of a slot.
Short collisions may represent RTS/CTS-like procedures:
before transmitting links probe the channel with a small
signaling message.

(b) Long collisions. The collision duration is equal to the
maximum transmission durations of links involved in
the collisions. To model long collisions, we assume that
the links involved in a collision all release the channel
with probability 1/µc at the end of a slot, where c
denotes the set of links experiencing the collision, and
µc = maxl∈c µl. Long collisions occur when RTS/CTS-
like procedures are not implemented.

In the following, we denote by s-CSMA(pl, µl, µ) and s-
CSMA(pl, µl) the above slotted CSMA algorithm with short
and long collisions, respectively.

A. Impact of collisions on efficiency

We now investigate the impact of collisions on the perfor-
mance of CSMA algorithms. We consider long collisions only.
The case of short collisions can be analyzed similarly. Assume
that the transmitter of link l implements the s-CSMA(pl, µl)
algorithm. Define by m[t] the resulting schedule used in slot t.
Note that m[t] may take any value in M = {0, 1}L due to the
possibility of collisions (if ml[t] = 1 = mk[t] and Akl = 1,
then links k and l experience a collision during slot t).

We introduce more notation: for any schedules m, m′ ∈
M, let s(m) denote the set of links successfully transmitting
in schedule m; let s(m,m′) be the set of links successfully
transmitting in both m and m′; s(m \ m′) is the set of links
successfully transmitting in m but not in m′; let c(m) be the
set of collisions in m (note that each c ∈ c(m) is a set of
links, and by convention, we write l ∈ c(m) if ∃c ∈ c(m) :
l ∈ c); let c(m,m′) be the set of collisions in both m and
m′; let c(m \m′) be the set of collisions in m but not in m′;
finally, let n(m) be the links that has a neighbor transmitting
in m, i.e., l ∈ n(m) if ∃k ∈ s(m) ∪ c(m) : Akl = 1.

Now (m[t], t ∈ N) is a discrete Markov chain whose
transition kernel (βm,m′ ,m, m′ ∈ M) is given by

βm,m′ =
∏

l∈s(m,m′)

(1 − 1
µl

)
∏

l∈s(m\m′)

1
µl

∏
c∈c(m,m′)

(1 − 1
µc

)

×
∏

c∈c(m\m′)

1
µc

∏
l∈s(m′\m)∪c(m′\m)

pl

×
∏

l/∈w(m)

(1 − pl),

where w(m) = m ∪ n(m) ∪ s(m′ \ m) ∪ c(m′ \ m). Then
one can easily verify that the Markov chain (m[t], t ∈ N) is
reversible as stated in the following lemma.

Lemma 3: Let 0 be the state such that no link is active.
Denote by πp,µ,s the distribution such that there exists G (a
normalizing constant) such that, for all m ∈ {0, 1}L \ {0},

πp,µ,s
m = G−1

∏
l∈s(m)

plµl

1 − pl

∏
c∈c(m)

[
µc

∏
l∈c

pl

1 − pl

]
,

and
πp,µ,s
0 =

1∏
l∈L(1 − pl)

.

Then the following local balance equations are satisfied:

∀m,m′, βm,m′πp,µ,s
m = βm′,mπp,µ,s

m′ .

Hence, πp,µ,s is the stationary distribution of the Markov
chain (m[t], t ∈ N).

Note that the superscript s in πp,µ,s indicates tht time
is slotted. Under the s-CSMA(λl, µl)’s algorithms, the link
throughputs are given by:

∀l ∈ L, γp,µ,s
l =

∑
m∈N :ml=1

πp,µ,s
m . (16)

From the above analysis, if we wish to get throughputs
under slotted CSMA algorithms very close to those obtained
under the continuous-time CSMA algorithms, we need either
(i) to keep the collision duration µ negligible compared to the
channel holding times µl’s (for the case with short collisions),
or (ii) or to keep the transmission probabilities pl’s close to 0,
and to have very large channel holding times. The condition (i)
could be ensured using RTS/CTS-like procedures and having
very large channel holding times. The condition (ii) would be
met if for all l ∈ L, pl = δαl, µl = ξl/δ with δ << 1. In
such case, in view of Lemma 3 and (16), we have

∀l ∈ L, γp,µ,s
l = γα,ξ

l − Clδ + o(δ),

where for all l ∈ L, Cl > 0 is a constant depending on the
αl’s and ξl’s, and on the network topology.

To adapt UO-CSMA to the practical scenario where time
is slotted, condition (i) is not sufficient. Indeed, the efficiency
of UO-CSMA in the continuous-time setting relies on the fact
that at any time t, the probability that a link, say l, becomes
active should be proportional to λl[t] if its neighbors are idle.
If we impose (i) only, the probability at which link l becomes
active is not proportional to pl, but depends in a complicated
manner on the transmission probabilities of its neighbors. In
such cases, there is no clear mapping between the pl’s (in
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the slotted-time system) and the λl’s (in the continuous-time
system).

When imposing condition (ii), this mapping is clear. We can
adapt UO-CSMA to the slotted-time setting by choosing a very
small parameter δ, by letting the transmission probabilities and
channel holding times be equal to δαl[t] and ξl[t]/δ at time
t for link l, and by updating the parameters (αl[t], ξl[t])’s as
in UO-CSMA (where λl[t] = αl[t] and µl[t] = ξl[t]). Since
we want to keep the collision rates at a very low level, we
need to keep the transmission probabilities very small, which
in turn means that in the updates of the αl[t]’s and the ξl[t]’s
in UO-CSMA should be such that the αl[t]’s remain bounded
- this is possible since in UO-CSMA what matters are the
products αl[t]ξl[t]’s only, not their individual values. With this
modification of UO-CSMA, we ensure that for all l ∈ L, the
long-term link throughput of link l is γ⋆,l − Clδ + o(δ).

B. Short-term fairness vs. Long-term efficiency

As we discussed at the end of Section III, if we want the
resulting link throughputs of UO-CSMA to be close to the
solution of (1), the products of the transmission probabilities
and of the channel holding times need to be very large. In
the adaptation of UO-CSMA to the slotted-time scenario, this
implies that the channel holding times are very large, since the
transmission probabilities must remain very small (to ensure
very low collision rates). This further implies that the delay
between two successive successful transmissions on a link is
very large as well. In other words, to ensure efficiency, we
need to sacrifice short-term fairness.

Another source of short-term unfairness with UO-CSMA
is the fact that if a link is interfered with by a lot of links
(compared to other links), before transmitting it needs to wait
until all its neighbors become inactive. This waiting time can
be very long, especially if these neighbors do not sense each
other. When the link finally gets access to the channel, it then
needs to hold the channel for a duration that is much larger
than the transmission durations of its neighbors, in order to
achieve throughput fairness. This may considerably exacerbate
short-term unfairness.

We now quantify the two above observations. We first
define the short-term fairness index of link l as 1/Tl where
Tl is the average delay between two successive successful
transmissions on this link. This is in contrast to the standard
notion of long-term fairness, which is often captured by the
α-fair utility function and refers to fairness at equlibrium.
For illustrative purposes, we consider a simple star network:
it is composed of L + 1 links, where link 1 is interfered
with by all other links (A1k = 1 for all k > 1) and where
link k, k > 1, is interfered with only by link 1 (Akl = 0
for all k, l > 1). At time t, the transmission probability for
link l is δ × αl[t] and the channel holding time is ξl[t]/δ.
We consider long collisions whose durations are equal to
the maximum duration of the channel holding times of the
links involved in the collision. For this network, the solution
of (1) is γ⋆

1 = 1/(L + 1) and γ⋆
l = L/(L + 1) for all

l > 1. Now we run UO-CSMA to update the parameters
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Fig. 1. Efficiency vs. short-term fairness tradeoff in a 3-link linear network.
Algorithm parameters: b[t] = 0.001, W (x) = x, V = 1, ϵαmax = 0.1.

(αl[t], ξl[t]). As mentioned above, the parameters αl[t] need
to be bounded. Without loss of generality, we assume here
that they are constant and equal to 1, and hence UO-CSMA
consists of updating the parameters ξl[t]’s. Assume that we
wish to guarantee that after convergence, the throughput of
link l is at least γ⋆

l ×(1−ϵ). From the analysis in the previous
subsection, we know that by scaling δ as ϵ, the throughput of
link l is equal to γ⋆,l×(1−ϵ/2+o(ϵ)). Let ξ⋆,l be the value of
ξl[t] after convergence of UO-CSMA. Note that, for all l > 1,
by symmetry, ξ⋆,l = ξ⋆. Now we have

γ⋆,1 =
ξ⋆,1

(1 + ξ⋆)L + ξ⋆,1
,

and for all l > 1,

Lγ⋆,l =
(1 + ξ⋆)L − 1

(1 + ξ⋆)L + ξ⋆,1
.

Achieving for all links l γ⋆,l ≥ γ⋆
l (1 − ϵ/2) requires first

that ξ⋆,1 ≈ ξL
⋆ /L and then that ξ⋆ scales as 1/ϵ. Finally, the

channel holding time for channel l > 1 has to scale as 1/ϵ2

whereas that for link 1 has to scale as 1/ϵ2L. Using classical
results in return times of Markov chains [40], we now have
that for all links l the short-term fairness index 1/Tl scales
as ϵ2L. This quantifies the trade-off between efficiency and
short-term fairness when implementing UO-CSMA in slotted-
time systems. Achieving high efficiency requires to deteriorate
short-term fairness considerably: in the above star network, to
ensure that the throughputs are at a distance at most ϵ from
the utility-optimal throughputs, the short-term fairness index
has to scale as ϵ2L.

We illustrate this tradeoff numerically using a simple 3-
link linear network, where links 1 and 2 (resp. 3 and 2) are
interefering with each other, but links 1 and 3 are interference-
free. Figure 1 shows the efficiency (i.e., 1−ϵ) as a function of
1/(short-term fairness index). 10 experiments were carried out
with different random seeds for each value on the x-axis. In
UO-CSMA, to limit collisions, we maintain all transmission
probabilities at a level less than 0.1, i.e., ϵ×αmax = 0.1. Note
that we can achieve a quite good efficiency for random access
without message passing, e.g. 85%. Pushing this efficiency
further up requires longer holding times.
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V. CONCLUSION AND FUTURE WORK

Achieving optimality in terms of throughput and fairness
has been known to require scheduling algorithms with message
passing. Recent works suggest adaptive CSMA without mes-
sage passing can achieve utility-optimality arbitrarily closely.
In this paper, we have confirmed, through a proof that does not
rely on freezing of network dynamics in between parameter
updates, that indeed this is true for the idealized, continuous-
time model, but there is an exponentially large price to pay
in terms of short-term fairness in the realistic, slotted-time
model. The algorithm development ideas and convergence
proof techniques have been based on a combination of the
powerful techniques of loss network modeling and simulated
annealing for distributed scheduling from the 1980s.

In addition to extending to multihop cross-layer models,
there are also more challenging next steps, especially the
characterization and design of transient behavior, including
short-term fairness and delay, through the algorithm param-
eters like V and the function W . Achieving queue stability
without message passing also remains open. Perhaps most
importantly, given that “simplicity” is the main attractiveness
of this class of adaptive CSMA algorithms, implementing and
deploying the proposed algorithms in an operational network
will help bridge the gap between theory and practice in
wireless scheduling.
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