
Complexity in Wireless Scheduling: Impact and Tradeoffs∗

Yung Yi
EE Dept. Princeton Univ.

Princeton, NJ, USA
yyi@princeton.edu

Alexandre Proutière
Microsoft Research

Cambirdge, UK
Alexandre.Proutiere

@microsoft.com

Mung Chiang
EE Dept. Princeton Univ.

Princeton, NJ, USA
chiangm@princeton.edu

ABSTRACT
It has been an important research topic since 1992 to maxi-
mize stability region in constrained queueing systems, which
includes the study of scheduling over wireless ad hoc net-
works. In this paper, we propose a framework to study a
wide range of existing and future scheduling algorithms and
characterize the achieved tradeoffs in stability, delay, and
complexity. These characterizations reveal interesting prop-
erties hidden in the study of any one or two dimensions
in isolation. For example, decreasing complexity from ex-
ponential to polynomial, while keeping stability region the
same, generally comes at the expense of exponential growth
of delays. Investigating trade-offs in the 3-dimensional space
allows a designer to fix one dimension and vary the other
two jointly. For example, incentives for using scheduling
algorithms with only partial throughput-guarantee can be
quantified with regards to delay and complexity. Trade-
off analysis is then extended to systems with congestion
control through utility maximization for non-stabilizable ar-
rival inputs, where the complexity-utility-delay trade-off is
shown to be different from the complexity-stability-delay
tradeoff. Finally, we analyze more practical models with
bounded message size, and consider “effective throughput”
which reflects resource occupied by control messages. We
show that effective throughput may degrade significantly in
certain scheduling algorithms, and suggest a mechanism to
avoid this problem in light of the 3D tradeoff framework.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Algorithms, Performance, Theory

Keywords
Scheduling, Wireless Networks, Tradeoff, Complexity

∗This work has been supported in part by ONR N00014-07-
1-0864, NSF CCF-0430487,and CNS-0720570.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiHoc’08, May 26–30, 2008, Hong Kong SAR, China.
Copyright 2008 ACM 978-1-60558-083-9/08/05 ...$5.00.

1. INTRODUCTION

1.1 Overview
Since the seminal work [25] on throughput maximization

for constrained queueing systems, there have been growing
interests in resource allocation algorithms with provable,
topology-independent throughput-guarantees over wireless
multi-hop networks. As will be defined in the next section,
throughput, measured by stability region, becomes the ob-
ject to be maximized. To overcome the exponential compu-
tational complexity of the optimal algorithm in [25] (referred
to as Max-Weight scheduling), a discussion on complexity
was initiated and a randomized algorithm was developed
in [24]. Distributed scheduling has been extensively studied
over the last several years, including Maximal and Greedy
scheduling algorithms [1, 12, 21, 23, 27], decentralized Pick-
and-Compare algorithms [4, 14, 20] motivated by [24], and
constant-time random access algorithms [6,11].

Then, the authors in [19,20] explicitly brought up another
dimension in addition to stability: the dimension of time
complexity, and developed parameterized algorithms that
achieve arbitrary trade-off between complexity and stabil-
ity1. However, stability is an asymptotic concept, and thus
its trade-off only with time complexity may not be well-
defined. In other words, certain notions of complexity may
be arbitrarily reduced without affecting throughput. This
raises a question on other performance metrics that has to
be paid as a cost for complexity reduction.

In this paper, we aim at proposing and studying a gen-
eralized framework which quantifies performance and com-
plexity, and their underlying tradeoffs in wireless scheduling
as a global perspective. To that end, we first parameterize
a family of scheduling algorithms that include major classes
known in existing literature and even new classes. This fam-
ily is called (γ, ξ, χ)-approximate algorithms, where γ and ξ
relate to the achievable throughput and delay, respectively,
and χ is the complexity parameter. We use this parameteri-
zation to (i) explain the root causes of complexity reduction
in low-cost (distributed) scheduling algorithms, (ii) quantify
their impact on throughput and delay performance, and (iii)
study the stability-delay-complexity trade-off and its engi-
neering implications on the design of scheduling algorithms.

This 3-dimensional trade-off space highlights the follow-
ing point: an appropriate framework to compare the large
set of alternative scheduling algorithms is to view each one
as one point in the 3D space on some achievable trade-off

1More precisely, trade-off between temporal “simplicity” of
scheduling algorithm and the set of stabilizable arrival rates.

surface. The 3-way trade-off relationship resolves potential
problems when trading-off two of the dimensions while let-
ting the other dimension “float”, e.g., complexity-stability
trade-off becomes well-defined for a fixed delay performance.
In comparison of two scheduling algorithms, a fair compari-
son can be made on the other dimensions, by equalizing one
dimension. Pictorially, this amounts to determining under
what settings of network parameters will one point in the
3D space be Pareto-dominant over the other. We extend
our analysis to the systems using congestion control for ar-
rivals outside the stability region. Complexity-utility-delay
trade-off is characterized, and now complexity may also neg-
atively impact utility in addition to delay.

Finally, we also consider the practical setup where in dis-
tributed algorithms the control message size is bounded, and
can include only a limited amount of information. By in-
troducing the notion of effective throughput to explicitly
consider time-resource used by control message, we provide
more practical analysis of existing queue-length based algo-
rithms, propose a different ways of using queue-length, and
quantify its impact on the tradeoff among effective through-
put, delay, and complexity.

1.2 Related Work
In addition to the seminal work and low-complexity schedul-

ing algorithms mentioned earlier, the average delay-bound
performance of the Max-Weight (MW) scheduling and its
variants were studied in switch scheduling [10,16,22] and in
wireless scheduling [7,17]. The delay-bound analysis is based
on the Lyapunov technique, originally introduced in [13] for
Markovian systems, which we also use in this paper. In
particular, the authors in [7, 16] also studied the tradeoff
between complexity and delay by introducing the “periodic
computation” of optimal schedules. Periodic computation
was also addressed as a source of complexity reduction with-
out loss of throughput in [2]. The work in [2] introduced the
notion of “ξ-inaccurate policy” and proved that the Pick-
and-Compare scheduling is ξ-inaccurate, but no delay anal-
ysis was presented. The case for non-stabilizable input ar-
rivals was discussed in, e.g., [2, 15] with utility maximiza-
tion subject to system stability or with Aloha-based random
access [9]. As Section 3 shows, our definition of (γ, ξ, χ)
generalizes ξ-inaccurate policy in [2] with delay analysis.
Our work generalizes the complexity-delay tradeoff studied
only for the MW scheduling and its periodic computations
in [7, 16], and also considers sub-optimal scheduling algo-
rithms as well as utility-delay-complexity in our framework.

While the delay bound based on Lyapunov technique and
the tradeoff between complexity and delay have been stud-
ied for a subset of scheduling algorithms, what remains to
be understood include (i) a generalized, yet tractable frame-
work that can include various optimal/sub-optimal algo-
rithms, and (ii) study of their complexity and its impact
on performance under different systems (e.g., with or with-
out congestion control). Under the generalized framework in
this paper, we can compare a wide class of scheduling algo-
rithms, recover a large amount of recently obtained results,
and potentially predict new performance characterization of
scheduling algorithms in the future. In the last part of the
paper, we also show that our framework can be extended to
study practical systems where message size is bounded and
its impact on tradeoffs.

1.3 Main Contributions and Organization
1) In Section 3, we propose a generalized family of schedul-

ing algorithms, called (γ, ξ, χ)-approximate algorithms.
This allows us to include major classes scheduling al-
gorithms today, such as Greedy, Locally-Greedy, and
Pick-and-Compare algorithms, followed by quantifica-
tion of throughput and average delay.

2) In Section 4, we use the definition of (γ, χ, ξ)-approximate
algorithms to mathematically understand the root causes
of complexity reduction in various low-complexity (dis-
tributed) scheduling algorithms, and quantify the im-
pacts of complexity reduction on throughput and de-
lay. Based on this, we study all three cases of two-
dimensional trade-offs, provided that one dimension is
fixed. This provides engineering implications on the
choice of scheduling algorithms in practical systems.
For example, for a fixed complexity (resp. delays),
we understand the conditions under which it is better
to choose suboptimal algorithms rather than optimal
ones in terms of throughput. In Section 5, we extend
our results to the systems with congestion control for
non-stabilizable inputs and quantify the utility-delay-
complexity tradeoff. We show that a popular method
of complexity reduction that does not affect stability
in stability-delay-complexity tradeoff now affects the
achieved utility.

3) In Section 6, we explore a related aspect of complexity
measure, the impact of bounding the size of control
messages in distributed scheduling. The measure of
“effective throughput” explicitly reflects complexity in
light of bounded message size, and is shown to possi-
bly degrade significantly for certain queue-size based
scheduling. This motivates us to study a modified
version of the algorithms that uses a time-differential
queue-length, and to characterize impact of this design
on 3D tradeoffs.

2. MODEL AND PERFORMANCE METRICS

2.1 System Model
Network and Traffic Model. The network is repre-

sented by a graph G(L,V), where L and V denote the set of
directional links, and the set of nodes, respectively. Denote
by L and V the numbers of links and nodes. The network
handles traffic from a set F of flows (i.e., sessions), each
identified by a set of source and a set of destination nodes.
Denote by F the number of sessions. We assume that each
node v ∈ V maintains a set of per-session queues with fi-
nite size. Each source node is fed by exogenous arrivals, and
we denote by Af,v(t) the exogenous traffic (in packets/slot)
generated by session f during time-slot t at node v.2 The
arrivals Af,v(t) are assumed to be i.i.d. across time-slots,
with mean E[Af,v(t)] = λf,v. We assume that the dura-
tion of a time-slot is small enough so that Af,v(t) is upper
bounded by a constant, Amax. Define the arrival vector by
λ = (λf,v, f ∈ F , v ∈ V).

Network resource and allocation scheme. The net-
work resources are represented by a finite set R of the feasi-
ble vectors describing the simultaneous achievable rates (in
packets/slot) on the links. In general, it depends on inter-

2By definition, Af,v(·) = 0 when v is not in the set of source
nodes of session f.

ferences among links. A resource allocation scheme then
aims at choosing in each time-slot a rate schedule S(t) =
(S1(t), . . . , SL(t)) ∈ R, where Sl(t) is the rate (in packet/slot)
of link l. We assume that our time-slot length is chosen such
that Sl(t) = 0 or 1. We model interference by a symmetric
matrix C ∈ {0, 1}L×L, where Cl,l′ = 1 if link l′ interferes
with link l, and 0 otherwise. This generalizes the one-hop,
two-hop, or generally K-hop interference model3 popularly
used in literature. We also assume that if S ∈ R then
S′ ∈ R if S′ ≤ S coordinate-wise. The resource allocation
scheme further shares the rate of each link among the vari-
ous sessions. We denote by Sf,l(t) the rate allocated for the
session f over link l, with

P

f∈F Sf,l(t) = Sl(t). Denote by
Rmax the maximum amount of packets per slot that one node
may receive (resp. transmit) from (resp. to) its neighboring
nodes. We will later use the constant Ω = Amax + 2Rmax.

We will consider problems in two types of systems. In
systems without congestion control, there is no way to control
the arrivals Af,v(t). All the arriving packets are queued
and must be processed by the network. In systems with
congestion control, one can control the arrival rates, which
are typically outside the stability region.

Queueing dynamics. Denote by Qf,v(t) the queue length
of session f at node v at time t. The queueing dynamics is
defined by the following recursion:

Qf,v(t+1)=Qf,v(t)−
X

l∈O(v)

Sf,l(t)+
X

l∈I(v)

Sf,l(t)+Af,v(t), (1)

where O(v) and I(v) denote the sets of outgoing and incom-
ing links of node v, respectively. Note that in the above
recursion, we assume that the scheduling algorithm is aware
of the queue lengths and does not schedule empty queues.

Stability. We use the following notion of queue stability:

Definition 2.1 (Stability). The system is stable, if

lim sup
t→∞

1

t

t
X

τ=0

E
h

X

f∈F,v∈V

Qf,v(τ)
i

< ∞.

When the queue length process Q(t) is Markovian, the sys-
tem stability is equivalent to the positive-recurrence of Q(t)
under the assumption of its aperiodicity and irreducibility.

2.2 Performance Metrics
(1a) Throughput. When arrivals are not controlled (i.e.,

without congestion control), a primary performance objec-
tive of any resource allocation scheme is to guarantee sta-
bility whenever possible, i.e., whenever the arrival vector λ
belongs to the throughput region defined as follows:

Definition 2.2 (Throughput-region). The throughput-
region Λ ⊂ RF×V

+ is the set of all arrival rate vectors for
which there exists a resource allocation scheme stabilizing
the system.

The throughput-region has already been characterized (see,
e.g., [3, 15]) as follows: Denote by co(Y) the smallest con-
vex set containing Y. Then λ ∈ Λ if there exists a pos-
itive vector s = (sf,l, f ∈ F , l ∈ L) such that (i) for all
f , if v is not in the set of destination nodes of session f ,
λf,v +

P

l∈I(v) sf,l =
P

l∈O(v) sf,l; (ii) there exists a vector

3In this model, two links l, l′ can transmit successfully only
if they are at a distance greater than K hops.

s′ = (s′1, . . . , s
′
L) ∈ R, such that for all link l,

P

f sf,l < s′l.
Note that sf,l may be interpreted as the long-term rate al-
located to session f along link l.

To compare various resource allocation schemes with re-
spect to their achieved throughput-region, we use the notion
of γ-throughput optimality:

Definition 2.3 (γ-throughput-optimality). A resource
allocation scheme is γ-throughput-optimal for some 0 < γ ≤
1, if it stabilizes the system for any λ ∈ γΛ.4

(1b) Utility. With congestion control, a standard perfor-
mance objective is to maximize an increasing and concave
utility function that captures fairness, traffic elasticity, or
user satisfaction, while maintaining system stability:

Maximize
P

f,v Uf,v(xf,v)

Subject to x = (xf,v, f ∈ F , v ∈ V) ∈ Λ, (2)

where xf,v is the long-term session rate, i.e.,

xf,v = limT→∞
1
T

PT
t=1 Af,v(t). Note that we restrict our

attention to stationary ergodic policies so that the above
limit always exists.

(2) Delay. For systems with or without congestion con-
trol, we also consider the sum of the stationary queue lengths,
i.e.,

P

f,v E[Qf,v(t)].

2.3 Complexity Metrics
Different complexity metrics have been considered differ-

ently for centralized and distributed algorithms. In this pa-
per, we focus on time complexity, which has particularly
interesting interactions with concepts based on the “time”
axis, such as stability and delay. In centralized algorithms,
time complexity is the number of “steps” taken to solve the
instance of a problem, where one step refers to one “basic”
operation in a computer. In distributed algorithms, time
complexity is measured by the number of “rounds”, where
one round corresponds to one unit of distributed operation,
e.g., the time to communicate with neighboring links once.

We denote by χ (amortized) time complexity, i.e.,

χ = lim
T→∞

PT
t=1 χ(t)

T
,

where χ(t) is the instantaneous time complexity at time t.
We assume that χ(t) is normalized by the data transmission
time at each slot. In particular, for distributed algorithms,
we assume that each time-slot is divided into control mini-
slots and data transmission slot, in which case the number
of mini-slots corresponds to time complexity χ(t) for slot t.
A control message in distributed algorithms is assumed to
include any information about queue lengths and link states
available at a node until Section 5. In Section 6, we deal
with the case when a control message is of a bounded size.

2.4 Throughput Optimal Resource Allocation
Throughput-optimal resource allocations have been pro-

posed, e.g., in [17, 25] with slightly different technical as-
sumptions and system models. Under these models, a re-
source allocation scheme consists of routing and scheduling.
Routing chooses the sessions to be served on a link, and
scheduling is responsible for selecting the schedule among
the links. The resource allocation scheme, described in Al-
gorithm 2.4, is well-known to be throughput-optimal.
4For simplicity, we just use the term ‘throughput-optimal’
when γ = 1.

Algorithm 1 TORA (Throughput Optimal Resource Allo-
cation)

• Routing (Max-Differential-Backlog). Let tx(l)
(resp. rx(l)) be the source (resp. destination) of the
link l and also let Df,l = Qf,tx(l)(t) − Qf,rx(l)(t). On
the link l, the session f?

l chosen for routing is:

f?
l = arg max

f∈F
Df,l. (3)

Let Ql(t) = maxf∈F Df,l, which is henceforth referred
to as just “queue-length” over the link l.

• Link scheduling (Max-Weight). Select the rate
schedule S?(t) defined by:

S?(t) = arg max
S∈R

X

l∈L

Ql(t)Sl. (4)

We denote by W ?(t) the maximum weight over all possible
schedules (i.e., the weight of S?):

W ?(t) = max
S∈R

X

l∈L

Ql(t)Sl.

In what follows, for an arbitrary resource allocation scheme,
we use W (t) to denote the weight of the rate schedule S(t)
at time t, i.e., W (t) =

P

l∈L Ql(t)Sl(t).
In TORA, routing can be performed using only local in-

formation with very small complexity. However, the MW
algorithm for link scheduling require high complexity, due
to the fact that it can be reduced to WMIS (Weighted Max-
imum Independent Set) problem, which is NP-hard5. This
high complexity should also become an impediment to dis-
tributed implementation. Thus, we mainly focus on link
scheduling in the rest of the paper.

3. GENERALIZED FRAMEWORK

3.1 (γ, ξ, χ)-Approximate Algorithms
To study complexity-stability-delay trade-offs, we first clas-

sify algorithms according to (i) how far they are from making
the “correct” scheduling decisions, and (ii) their complexity.

Definition 3.1 ((γ, ξ)-approximate algorithms). A
link scheduling is said to be (γ, ξ)-approximate for some fi-
nite, positive constants γ and ξ, if, at any time-slot t,

W (t) ≥ G(t)W ?(t) − C(t),

where G(t) and C(t) are random variables, such that

G(t) ≥ γ, E[C(t) | Q(t)] ≤ ξ.

We henceforth say that an (γ, ξ)-approximate algorithm
with complexity less than or equal to χ is (γ, ξ, χ)-approximate.
However, we just use (γ, ξ), unless χ is explicitly needed.
Note that our definition of (γ, ξ)-approximate algorithms is
general in a sense that C(t) are random variables. This al-
lows us to handle wide classes of the existing link scheduling
algorithms such as randomized ones.

5For one-hop interference model, it is not NP-hard, and the
problem can be solved with O(L3) complexity. However,
unless explicitly stated, we henceforth assume that optimal
link scheduling requires exponential complexity.

3.2 Examples
We now provide examples of approximate algorithms. Proofs

of Lemmas in this section are delayed in the Appendix.
We first introduce some necessary notations. Let Θ(l)

be the set of links interfering with the link l, and θ(l) be
the maximum number of links in Θ(l) that can be sched-
uled simultaneously without conflict. Finally, we let θ =
maxl∈L θ(l). Note that Θ(l), θ(l), and θ depend on the given
graph G as well as the interference model, but we omit it
from the notations for simplicity.

(a) Greedy scheduling [12,23,27]. In the Greedy schedul-
ing, 1) start with an empty schedule and a set N = L; 2)
add to the schedule the link l ∈ N with the longest queue
length, and remove from N the links interfering with link l;
3) repeat step 2) until N is empty. The Greedy scheduling
is (1/θ, 0)-approximate with the MW scheduling [23].

(b) Locally-Greedy scheduling. The Locally-Greedy schedul-
ing is similar to the Greedy scheduling, except that in each
step 2), the link l to be added to the schedule is chosen
randomly among the links in N that have a locally-longest
queue length in N . A link is said to have a locally-longest
queue length in N if its queue length is greater than any of
its interfering links also in N .

Lemma 3.1. The Locally-Greedy scheduling is (1/θ, 0)-
approximate.

The best complexities of Greedy and Locally-Greedy algo-
rithms known to date are O(L log V) and O(L), respectively,
for one-hop interference [18]. This asymptotic decrease in
complexity is intuitive, since Greedy ⊂ Locally-Greedy.

(d) Pick-and-Compare-γ [4,7,14,20,24]. The algorithm
first generates a random schedule S′(t) satisfying C1, and
then schedule S(t) defined in C2.

C1. ∃0 < δ ≤ 1, s.t. P[S′(t) = S|Q(t)] ≥ δ, for some
schedule S, where W (S) ≥ γW ?(t).

C2. S(t) = arg maxS={S(t−1),S′(t)} W (S).

The Pick-and-Compare-γ provides only a probabilistic guar-
antee of finding a “γ-optimal” schedule in C1 with selection
of“better” schedule in C2. The idea of“pick”and“compare”
has been used in many sophisticated distributed scheduling
algorithms that achieve throughput-optimality with polyno-
mial complexity. First, the following lemma states that the
Pick-and-Compare scheduling belongs to the framework of
(γ, ξ)-approximate algorithms.

Lemma 3.2. A Pick-and-Compare-γ scheduling is (γ, ΩV (1+
γ)/δ)-approximate.

This result has been proved for γ = 1 in [2]. The proof
for γ < 1 is presented in the Appendix.

3.3 Throughput and Delay Performance
The three parameters γ, ξ, and χ can be controlled by

system designers. As it will be shown in Theorem 3.1, the
stability property depends on γ only. We will further show
that ξ closely relates to delay, whereas by definition χ is
directly related to time complexity. We can choose two pa-
rameters (thus, two performance metrics) freely, but the re-
maining performance metric will be affected by such a choice
of two parameters. Later in Section 4, we formally study the
trade-offs among these three parameters. First, some basic
characterizations on throughput and delay are as follows.

Theorem 3.1 (Throughput). (γ, ξ)-approximate algo-
rithms are γ-throughput-optimal.

The proof when γ = 1, ξ = 0 was presented in [17, 25]. Its
extension to γ < 1, ξ > 0 is straightforward, and will be
presented in the Appendix for completeness.

Now, we discuss the delay property. Consider a (γ, ξ)-
approximate algorithm Π and an arrival vector λ stabilizable
by Π, i.e., λ ∈ γΛ. We first introduce a notion of the dis-
tance between λ and the boundary of γΛ, which essentially
represents how heavily the system is loaded.

Definition 3.2 (Distance).

dγ(λ) = sup{δ : λ ∈ (1 − δ)γΛ}. (5)

Analyzing the exact delay performance of the system con-
sidered in this paper is very difficult and still an open prob-
lem due to very complex coupling of queueing dynamics
across links with large dimensions. Thus, we rely on the
upper bound on the mean queue length (thus mean delay
by Little’s formula), as proved in Theorem 3.2. The delay
bound for the MW scheduling (i.e., γ = 1) has already been
studied in [7,10,15–17,22] for slightly different system mod-
els, based on the ideas of telescoping the Lyapunov function
values over times [13]. Again, extension to γ < 1 is not
difficult, which is shown in the Appendix for completeness.

Theorem 3.2 (Delay). Let Π be a (γ, ξ)-approximate
algorithm, and λ ∈ γΛ. We have:

lim sup
T→∞

1

T

T
X

t=1

X

f,v

E
h

Qf,v(t)
i

≤ f(ξ)

γdγ(λ)
, (6)

where f(ξ) = V Fξ+(V FΩ2V/2), i.e., the mean delay bound
is linear in ξ.

4. COMPLEXITY-STABILITY-DELAY
TRADE-OFF

4.1 Two Methods of Complexity Reduction
We first summarize two ways of reducing complexity and

then quantify their impact on throughput and delay perfor-
mance inside the framework of (γ, ξ, χ)-approximate algo-
rithms.

4.1.1 Weight Approximation
As discussed earlier, optimal MW scheduling has to solve

WMIS problems over time-slots with different weights. One
natural way of complexity reduction is to take approxima-
tion algorithms to have polynomial time algorithm at the
cost of sub-optimality in the resulting weight. The sub-
optimality ratio is γ < 1 in our definition. Greedy and
Locally-Greedy scheduling are constant-factor approxima-
tion algorithms, where all with approximation ratio is 1/θ.
Then, from Theorem 3.1, its (worst-case) throughput re-
gion is reduced from Λ to Λ/θ. In regard to delay perfor-
mance, consider a stabilizable arrival vector, i.e., λ ∈ Λ/θ.
Weight approximation does not affect ξ, but delay will be
affected by the change of throughput-ratio, i.e., γ = 1 →
γ = 1/θ and dγ(λ) from Theorem 3.2. We note that it
is still an open problem to achieve arbitrary γ < 1 with
just a polynomial time approximation algorithm, since the
WMIS problem does not allow PTAS (Polynomial-Time-
Approximation-Scheme) [26].

4.1.2 Frequency Reduction
Stretching. Another way of complexity reduction with-

out affecting the throughput region is to compute optimal
schedules infrequently. This idea of “stretching” has been
presented in several recent works [2, 7, 22] and can be for-
mally and more generally defined as follows:

Definition 4.1 (m-Stretching). Consider a resource
allocation algorithm Π that is (γ, ξ, χ)-approximate, and se-
lect a sequence of random time slots t0, t1, t2, . . . , such that
E[ti− ti−1] = m, for all i = 1, 2, . . . , and some fixed m < ∞.
Now define the i-th frame as a period of ti−ti−1 consecutive
time-slots. Then the m-stretched algorithm Π(m) obtained
from Π uses the same procedure as Π, but updates the opti-
mal schedules only at the beginning slot of each frame. Once
the schedule has been defined, it remains the same for the
entire duration of the frame.6

The amortized complexity of Π(m) naturally becomes χ/m.
Note that this stretching is well-defined but differently for
both centralized and distributed algorithms, where χ is the
number of “steps” and “rounds”, respectively. Throughput
and delay property of m-stretched algorithms are stated in
the following theorem:

Theorem 4.1. For a (γ, ξ, χ)-approximate algorithm Π,
Π(m) is (γ, ξ + mV Ω(1 + γ), χ/m)-approximate.

It is well-known as well as intuitive from control theory
and other related work [2, 7, 22]7 that stretching does not
affect stability, which is also verified in view of our Theo-
rems 3.1 and 4.1. This is due to the fact that stability is
guaranteed as long as the long-term service rates are equal
to the long-term arrival rates. Thus, infrequent computation
of some scheduling with a finite period on average does not
affect the stability property. However, it may adversely af-
fect delay, which is the price to pay for complexity reduction.
From Theorem 3.2 and Theorem 4.1, the delay increase by
m-stretching is no larger than linear with m.

The following example shows that this linear increase with
respect to m is tight in the worst-case in the sense that there
exists a network topology where the delay of m-stretching in-
creases linearly with m, as shown in Example 4.1. Note that
this does not imply that the delay bound in Theorem 3.2 is
tight. In Example 4.1, we start from a (1, 0)-approximate
algorithm, i.e., MW scheduling, and stretch it by a factor
m, i.e., (1, O(m))-approximate algorithms.

Example 4.1. Consider a network of two interfering links
(thus, only one link should be activated for successful trans-
mission) and two single-hop sessions over these links. For
both sessions, packets are generated according to i.i.d. Bernoulli
processes of identical rates λ. The service rate is one packet
per slot. Then, the throughput region is characterized by
λ < 1/2. Assume now that λ < 1/2. When m is large, by
ergodicity, the m-stretched algorithm serves the two queues
alternatively for m consecutive slots, with high probability:
Queue 1 is served in slots 2km, . . . , (2k+1)m−1, and Queue

6We can define this stretching in a slightly different manner
that computation of an optimal schedule at ti is equally
divided over the entire i-frame. The amortized complexity
is same for both definitions.
7There, stretching is deterministic, i.e., ti = mi, i =
1, 2,

λ λ λ λ λ

λ
λ

λ

λ

λ

λ

λ 0 200 400 600 800 1000
Length of stretch (slots)

0

5×10
3

1×10
4

2×10
4

2×10
4

2×10
4

3×10
4

M
ea

n
Q

ue
ue

 L
en

gt
h

 λ = 0.095
 λ = 0.105
 λ = 0.115

(a) (b)

Figure 1: (a) A 5x5 grid network and an example of

maximal schedule under 2-hop interference model. (b)

Mean queue length vs. stretching parameter m.

2 is served in slots (2k+1)m, . . . , (2k+2)m−1. In this case,
a lower bound on the mean delay of packets at Queue 1 is
obtained assuming that all packets arriving at this queue be-
tween slots 2(k − 1)m and 2km are actually generated in
slot 2km. It is then easy to see that the mean delay in this
modified system is O(m

(1/2−λ)
).

Now, we provide another numerical example with more
complex network topology. We again start from the MW
scheduling and stretch it by increasing m. Consider now a
5× 5 grid network with single-hop sessions and 2-hop inter-
ference model. In this grid, a line between a pair of lattice
points corresponds to a link. Figure 1(a) shows the topol-
ogy and an example maximal schedule in the system. Each
link supports a session, and for all sessions, packets are gen-
erated according to Bernoulli processes at the same rate λ
packets per slot. This network has 40 links (i.e., sessions)
and 1923 maximal schedules. Numerically, we observe that
the maximum throughput is achieved for λ ≈ 0.12. In Fig-
ure 1(b), we present simulation results showing the mean
total queue length as a function of the stretching parameter
m, for λ = 0.095, 0.105 and 0.115. Again the queue length
linearly increases with m.

Stretching and Pick-and-Compare scheduling. The
idea of (randomized) stretching is important to understand
complexity reduction of the Pick-and-Compare scheduling.
From Lemma 3.2 and Theorem 4.1 (ξ = 0), m-stretching and
the Pick-and-Compare with δ in C2 are equivalent, where
m = 1/δ. In fact, the Pick-and-Compare scheduling is a
version of 1/δ-stretching, where a sequence of slots (ti) are
determined by a geometric random variable with parameter
δ. We comment that the comparison operation C2 is crucial
to develop a distributed algorithm based on the Pick-and-
Compare scheduling. This is because it is very difficult to
know in a distributed manner that a random schedule at a
time-slot is indeed an optimal schedule. The operation C2
provides stronger guarantee than the condition of stretching
that the same schedules are used inside a frame, but is more
amenable to distributed implementation.

4.2 3D Trade-offs: Three Pairwise Trade-offs

4.2.1 Complexity-Delay Trade-off
Theorems 3.2 and 4.1 allow us to quantify the complexity-

delay trade-off realized by infrequent γ-optimal schedule com-
putation, when the stability region (i.e., γ) is fixed.

We exemplify this trade-off in the case of the MW schedul-
ing and the Pick-and-Compare-1 with the parameter δ (see

Stability

Delay

Complexity

O(2L)

O(2L)

1

TORA-(1,ξ,χ)

TORA-(1/Θ,ξ,χ)

TORA-MW

TORA-PC (γ=1,δ ~ 1/2L)

TORA-GREEDY

stretching

Figure 2: 3D trade-off space, and the achieved trade-off

points and curves by some of the algorithms with the

MW rule. PC: Pick-and-Compare-1.

condition C1 in Section 3), where recall that both algo-
rithms are throughput optimal. Then to reduce exponential
complexity of the MW scheduling to a polynomial complex-
ity, one has to stretch the algorithm by a factor ∼ 2L, in
which case the average delay scales as 2L. The Pick-and-
Compare scheduling is known to have a polynomial com-
plexity only if its parameter δ is close to 2−L, in which case
the average delay also scales as 2L (in view of Lemma 3.2 and
Theorem 3.2). Exponential decay of probability of finding
the optimal schedule is supported by the existing distributed
algorithms [4, 7, 14, 20, 24] based on the Pick-and-Compare
scheduling. The price to pay to reduce complexity (from ex-
ponential to polynomial) with the above algorithms is large.
This is due to the fact that we need an exponential stretch-
ing, and thus, an exponential growth of delay.

4.2.2 Stability-Delay Trade-off
Now we fix the complexity, and analyze the trade-off be-

tween stability and delay. This analysis aims at answering
the following question: for a fixed complexity, could we have
incentives in terms of delay to choose a γ-throughput opti-
mal algorithm with γ < 1 rather than throughput optimal
algorithms?.

Assume that the arrival vector λ ∈ Λ, and denote by γ
the smallest γ > 0 such that λ ∈ γΛ. Then, to stabilize the
system, we may choose any γ-throughput optimal algorithm
for γ > γ.

Consider two algorithms Π and Π′ that are (1, 0, χ)- and
(γ, 0, χ′)-approximate, respectively, with γ < γ < 1. Of

course, we should expect that χ′ < χ. Now we equalize the
complexities of Π and Π′ by stretching these algorithms by
some factors. Here, without loss of generality, we stretch Π
and Π′ by factors χ and χ′, so as to have unit complexity.
Then the delay bounds for these stretched algorithms Π(χ)
and Π′(χ′) are respectively:

2χΩV + Ω2V/2

d1(λ)
,

2χ′ΩV + Ω2V/2

γdγ(λ)
.

Since γdγ(λ) = γ−1+d1(λ) by Definition 3.2, we conclude
that Π′(χ′) provides a better delay performance than that
of Π(χ) if:

d1(λ)χ′ +
(1 − γ)Ω

4
< (d1(λ) − (1 − γ))χ. (7)

We illustrate the trade-off by comparing the MW schedul-
ing Π, which is (1, 0, χ ∼ 2L)-approximate, and the Greedy

scheduling Π′, which is (1/θ, 0, χ′ ∼ polynomial)-approximate.
We can easily see that we get better delays with the Greedy
scheduling (i.e., (7) holds) when the network size L, is suffi-
ciently large.

4.2.3 Complexity-Stability Trade-off
Now, we equalize the delays (again by stretching), and

then study the relationship between complexity and stabil-
ity for two scheduling algorithms. This allows us to know
whether choosing an algorithm with smaller stability region
can be beneficial in terms of complexity.

Consider the same arrival rate λ, and the same algorithms
Π and Π′ as those considered for the analysis of the stability-
delay trade-off. Now, stretch Π by factor m, such that the
delays of Π(m) and Π′ are equalized. Then, m should be
chosen as

m =
(1 − γ)Ω

4(d1(λ) − (1 − γ))
.

The complexities of Π(m) and Π′ become, respectively,

χ
4(d1(λ) − (1 − γ))

(1 − γ)Ω
, and χ′.

Therefore, Π′ is simpler, in terms of time complexity, than

Π(m) if χ′ < χ 4(d1(λ)−(1−γ))
(1−γ)Ω

. Again, if we compare the

stretched MW scheduling Π(m) and the Greedy scheduling
Π′, we see that Π′ provides better complexity than Π(m)
while at the same delays.

To summarize, we may indeed decide to choose a γ-throughput
optimal algorithm with γ < 1, as a way to reduce delays (for
a fixed complexity), or as a way to reduce complexity (for a
fixed delay), as long as the network size is reasonably large.

4.3 Understanding Alternative Approaches
Now we turn to understanding the alternative approaches

of getting arbitrarily close to throughput-optimality with
polynomial time complexity.

Mixture of weight approximation and stretching. Ex-
amples include [20] under one-hop and its extension to gen-
eral K-hop interference model [29]. The algorithms, param-
eterized by k, are (k/(k + 2), O(kL), 4k + 2)-approximate8,
thereby delay scales as kL. Getting throughput arbitrar-
ily close to 1 with polynomial time complexity cannot be
achieved just by taking weight-approximating algorithms.
This is due to the fact that WMIS does not allow PTAS
(Polynomial-Time-Approximation-Scheme), as mentioned in
Section 4.1.1, where, however, the work in [20,29] essentially
mix weight-approximation with stretching (realized by the
Pick-and-Compare scheduling) to achieve it.

Weight approximation for restricted topology. The au-
thors in [7, 19] proposed the family of algorithms, also pa-
rameterized by k, with all polynomial complexity as well
as polynomial delay, w.r.t., k. This may seem to contradict
our analysis, but they considered special cases of network
topologies, where the WMIS problem allows PTAS. Thus,
without stretching, they can parameterize the algorithms
whose stability is arbitrarily close to that of the optimal
one, even with polynomial delay. As an example, in [7],
non-expandable network topology, which we refer the read-
ers to [7] for its formal definition, is considered. The work
8In [20], O(kL) is the order of the lower-bound of 1/δ of the
Pick-and-Compare scheduling. In this discussion, we assume
such a lower-bound is order-wise tight.

in [8, 21] has the similar idea, where the optimal scheduling
is implemented with polynomial time complexity [8] or the
performance of maximal scheduling is improved [21], both
under tree-based topologies.

5. COMPLEXITY-UTILITY-DELAY
TRADE-OFF

When the arrival rates are outside of the throughput-
region, congestion control algorithm needs to be used in
conjunction with routing and link scheduling, often in the
utility maximization framework. This section is devoted to
the trade-off study among utility, complexity, and delay.

5.1 Utility-Optimal Resource Allocations
First, we briefly review an optimal algorithm that max-

imizes the achieved utility and also stabilizes the system.
Various types of algorithms such as dual-based algorithms
and primal-dual-based algorithms, have been proposed un-
der slightly different conditions and system models (see [28]
and the references therein for the survey). In this paper, we
use the dual-based algorithm in [15], shown in Algorithm 2,
to study the tradeoff.

Algorithm 2 UORA (Utility Optimal Resource Allocation)

• Congestion control. Each source node v of each ses-
sion f set their data injection rate Af,v to be the op-
timal solution of the following:

max
Af,v(t)≤Amax

“

βUf,v(Af,v(t)) − Af,v(t)Qf,v(t)
”

, (8)

where β > 0 is a parameter.
• Routing and Link Scheduling. Same as those in

TORA.

The β corresponds to the tunable parameter which de-
termines the difference value U? − Ū(β), where U? the op-
timal utility (i.e., the optimal solution of (2)). The Ū(β)
is the achieved utility by UORA-MW for the parameter β,
i.e., Ū(β) = U(limT→∞

1
T

PT
t=1 Af,v(t)), where Af,v(t) is

controlled by (8). In [15], the authors proved that as β in-
creases, Ū(β) approaches to U?, but the delay may linearly
increase.

5.2 3D Trade-off
Consider a UORA algorithm, where link schedule is re-

placed by a (γ, ξ)-approximate algorithm, which we denote
by UORA(γ, ξ). This enables us to quantify the impact of
complexity on utility and delay. Denote by U?(γ) the opti-
mal solution of (2), where the constraint set is changed from
Λ to the throughput-region attained by a (γ, ξ)-approximate
algorithm, i.e., γΛ. Unfortunately, it is known that UORA(γ, ξ)
does not converge to U?(γ) unless Uf,v(·) is linear. In other
words, we require the property of the utility function that
U ′(γx) = γU ′(x), for x > 0. We refer the readers to an
example of such a case to [12].

Therefore, in this section we focus only on (1, ξ)-approximate
algorithms, such as the MW scheduling or the Pick-and-
Compare scheduling-1. We extend the notation Ū(β) to Ū(β, ξ)
to refer to the achieved utility by UORA(1, ξ) with param-

eter β. Denote Q̄ be the average queue length, i.e., Q̄ ,
lim supT→∞

1
T

PT
t=1 E[

P

f,v Qf,v].

Theorem 5.1. UORA(1, ξ) stabilizes the system for any
ξ < ∞, and

Q̄ ≤ B + ξ + βV Umax

λmax
, Ū(β, ξ) ≥ U? − B + ξ

2β
,

where B is some constant depending on the network size,
λmax = supλ{(λ)f,v ∈ Λ}, and Umax is an upper bound on
the utility, i.e., Umax = maxv∈V,xf,v≤Amax

P

f Uf,v(xf,v).

The proof is presented in the Appendix. Theorem 5.1 says
that the average delay scales linearly with the parameter ξ,
as in the system without congestion control. However, the
achieved utility is also affected by ξ linearly, which is in
sharp contrast to the stabilizable inputs, where ξ does not
affect throughput (see Theorem 3.1). From Theorem 5.1,
we can quantify various 3D trade-offs as in the case without
congestion control. Due to space limitation, we only provide
one example here.

Consider UORA and the Pick-and-Compare-1 with the
parameter δ. To have a polynomial-time algorithm, from
Lemma 3.2, we require that δ = 1/O(2L), thereby ξ ∼ 2L

in Theorem 5.1. This implies that for any choice of β, de-
lay scales exponentially with the network size, and (ii) by
choosing β ∼ 2L large enough, we can have polynomial sub-
optimality (w.r.t. U?) of the achieved utility, but at the ex-
pense of much-increased delay ∼ O(ξ+β) = 2L+2L = 2L+1.

6. EFFECTIVE THROUGHPUT
UNDER BOUNDED MESSAGE SIZE

6.1 Impact of Bounded Message Size
In this section, we consider the important case of dis-

tributed implementation of those (γ, ξ, χ)-approximate algo-
rithms that use the queue-lengths to determine a schedule.
The example algorithms addressed earlier belong to this cat-
egory. They exchange control messages to notify the neigh-
bors of their queue lengths. Recall that χ(t) is the time for
control message exchange at time t, measured by the num-
ber of unit distributed operation such as convey the queue
length over a link to its neighbor. We remove somewhat im-
practical assumption in earlier sections that a control mes-
sage can include arbitrary size of state information. Indeed,
a control message size is usually bounded due to scarce re-
source of communication links and implementation issues.
The overhead of control messages should not be ignored in
a proper accounting of the tradeoff study.

To study practical impact of bounded message size on
scheduling, we introduce the notion of effective throughput.
Effective throughput corresponds to the real throughput of
data that considers time resource occupied by control mes-
sage exchange. A little thought leads us to the fact that the
effective throughput region of a (γ, ξ, χ)-approximate algo-
rithm decreases from γΛ to (γ

1+χ
)Λ.

A simple implementation of queue-size based distributed
scheduling algorithms may use a “bit-encoder” which en-
codes Ql(t), for a link l, with log2(Ql(t)+1) bits. When the
message is one-bit, this will generate log2(Ql(t) + 1) num-
ber of control messages. Observe that χ(t) is an increasing
function of Q(t), and tends to ∞, as Ql(t) → ∞. Then,
this system using the bit-encoder becomes unstable for any
positive arrival rate, since as the queue length increases, the
service rate (per unit time) goes to zero. Thus, the effec-

Stability

Delay

Complexity

O(2L)

O(2L)

1

1/θ

TORA-MW:
Small network

TORA-GREEDY

stretching increases stability

TORA-MW: Large network

Figure 3: The achieved trade-off points for MW

and Greedy with bounded message size and effective

throughput.

tive throughput of such systems becomes zero, irrespective
of network size and (positive) arrival rate.

6.2 Time-Differential Queue Size and
Resulting 3D-Tradeoffs

The root cause of bad effective throughput for bounded
message size is due to the fact that time complexity de-
pends on queue-lengths, which can be arbitrarily large. To
achieve a positive throughput-region, we propose the idea
of using time-differential queue size, i.e., only the increase
or decrease in queue size (with initialization of updating the
queue lengths at time slot 0), whenever the actual queue
size information is needed in the “original” algorithms. Ex-
changing the queue length difference over time allows the
algorithms to have time-complexity that does not increase
with the queue lengths. The following theorem states that
complexity in the algorithms with time-differential queue
size does not change significantly, compared to those which
uses actual queue lengths:

Theorem 6.1. For a original (γ, 0, χ)-approximate algo-
rithm Π, its m-stretched algorithm Π′ with time-differential
queue size is (γ, mV Ω(1+γ), χ log2(mΩV)/m)-approximate.

The proof is not hard, since χ (which is independent of
boundedness of message size) is reduced by a factor of m
because the γ-optimal schedule is computed over m slots
on average, and the amount of queue-size change over a
link is bounded by mΩV. For example, for the original MW
scheduling, which is (1, 0, χ)-approximate, the MW schedul-
ing and the Pick-and-Compare-1 with parameter δ using
time-differential queue size is (1, 0, χ log2(ΩV)), and
(1, 2V Ω/δ, χδ log2(ΩV/δ))-approximate.

Now, we discuss the tradeoffs in throughput, delay, and
complexity due to introduction of effective throughput with
bounded message size. The achievable 3D tradeoff is not
same as before, as illustrated in Figure 3, and summarized
as follows:

(i) Stretching affects the effective throughput. From The-
orem 6.1, the effective throughput region of Π′ is γ/(1+
χ log2(mΩV)/m)Λ. Effective throughput region can be-
come arbitrarily close to its ideal throughput, i.e., γ, as
m → ∞, which, again, leads to an exponential increase
of delay.

(ii) Effective throughput of low cost scheduling via weight
approximation may be larger or smaller than that of its
optimal algorithm, depending on the network size. To
illustrate it, consider the MW rule and Greedy schedul-

ing. From Theorem 6.1, their effective throughputs are
1/χMW log2(ΩV) and γ/χGR log2(ΩV), respectively,
where χMW = O(2L) and χGR = O(L log V), and
γ = 1/θ < 1. Thus, if 1/χMW > 1/θχGR, the effec-
tive throughput in the MW rule is larger, which holds
for sufficiently small-scale networks, and the opposite
result is obtained for sufficiently-large scale networks.

7. CONCLUDING REMARKS
Scheduling in wireless networks can be conducted in many

variants. Comparing these alternatives requires understand-
ing not just throughput region but also the trade-off among
various performance metrics with complexity. This paper
develops a generalized framework, and characterizes the achiev-
able trade-off curves in a parameterized family of algorithms
that cover major classes of known algorithms. Pairwise
trade-offs are proved, and extensions to complexity-utility-
delay trade-off are developed. These characterizations quan-
tify intuitions on what price must be paid for simplicity of
scheduling algorithms.

Our study also reveals many under-explored questions in
the important area of wireless scheduling: How to use two
degrees of freedom in parameterization of scheduling algo-
rithms so that an entire surface rather than just a curve
as in current works can be traced out in the 3D trade-off
space? How to incorporate other measures of complexity
such as communication complexity? Can “outer bounds” on
trade-off surface be obtained from “converse theorems”? Fi-
nally, how to model and characterize the impacts of practi-
cal issues, such as bounded message size, so that distributed
scheduling can be actually used in practice?

Appendix
Proof of Lemma 3.1. Choose any optimal schedule S?

with MW rule. Let (S1, S2, . . . , Sm) be the sequence of
schedules when a link is sequentially added by Locally-greedy
scheduling. We also let S?

i = S? ∩ (Si ∪l∈Si Θ(l)), where
recall that Θ(l) is the set of interfering links with l. It suf-
fices to show that W (Si) ≥ 1

θ
W (S?

i), i = 1, . . . , m, since
the final schedule Sm is a maximal schedule and satisfies
W (S?

m) = W (S?). Let li be the added link at i-th phase,
i.e., li = Si \ Si−1. Remarking that the number of links in
S? ∩ Θ(li) is no larger than θ and the weight of li is the
largest of the links in Θ(li) (i.e., locally-longest), the sum of
weights of links in S? ∩Θ(li) is no larger than θW ({li}), the
result follows.

Proof of Lemma 3.2. Denote by {ti}i=0,1,... be the se-
quence of (random) time slots, where W (ti) ≥ γW ?(ti).
Let ∆ti = ti+1 − ti. Now for ∀t ∈ (ti, ti+1), we have: (i)
W (t) ≥ W (ti) − V Ω and (ii) W ?(t) ≤ W ?(ti) + ∆tiV Ω.
Hence, W (t) ≥ γW ?(t) − ∆tiV Ω(1 + γ). Thus, the result
follows, from the fact that E[∆ti] = 1/δ.

Proof of Theorem 3.1 and Theorem 3.2. We first in-
troduce the following notations: All quantities associated
with session f are denoted by a superscript f : Qf (t) =
(Qf,v(t), v ∈ V), Sf (t) = (Sf,l(t), l ∈ L), Af (t) = (Af,v(t), v ∈
V), and λf = (λf,v, v ∈ V). For a vector s = (sf,l, f ∈ F , l ∈
L), we define sl =

P

f∈F sf,l. We also define the V ×L ma-

trix Rf with (v, l)-component equal to 1 if v = rx(l) and v
is not the destination of packets of session f , -1 if v = tx(l),
and 0 otherwise. With these notations, the evolution of

queues related to session f can be written as:

Qf (t + 1) = Qf (t) + RfSf (t) + Af (t).

Also note that the weight of the schedule S(t) becomes:

W (t) = −
X

f∈F

Qf (t)T RfSf (t),

where aT is the transpose of vector a. One can easily show
(as in [25]) that if λ ∈ γΛ, then there exists δ > 0 such that

∀i ∈ I,∃s(i) = (sf,l(i), f ∈ F , l ∈ L) : (s1(i), ...sL(i)) ∈ Ri,

and λf = −(1 − δ)γRf
X

i∈I

πis
f (i),∀f ∈ F . (9)

Recall that the distance between λ and γΛ has been defined
by the supremum of δ such that (9) holds. Now consider
the usual quadratic Lyapunov function and the correspond-
ing drift: L(t) =

P

f,v Qf,v(t)2 and ∆L(t) = E[L(t + 1) −
L(t)|Q(t)]. Following [25], we can show that:

∆L(t) ≤
X

f

E[(RfSf (t)+Af (t))T (RfSf (t)+Af (t))|Q(t)]

+ 2Qf (t)E[(RfSf (t) + Af (t)T |Q(t)]. (10)

The first term at the right side of (10) can be easily bounded
by a constant b = V Ω2. The second term is:

2
X

f

Qf (t)T Rf E[Sf (t)|Q(t)] + 2
X

f

Qf (t)T λf .

Now for (γ, ξ)-approximate algorithms:
X

f

Qf (t)T Rf E[Sf (t)|Q(t)] ≤ −γE[W ?(t)|Q(t)] + ξ.

We also have in view of (9):
X

f

Qf (t)T λf ≤ (1 − δ)γ
X

i∈I

πiE[W ?(t)|Q(t),R(t) = Ri].

Finally, remarking that W ?(t) ≥
P

f,v Qf,v(t)/V F, and tak-

ing δ as large as dγ(λ), we have:

∆L(t) ≤ Ω2V + 2ξ − 2γdγ(λ)
X

f,v

Qf,v(t). (11)

Summing the above inequalities for t = 1 to T, we get:

E
h

L(j) − L(0)
i

≤ j(ΩV 2 + 2ξ)

− 2γdγ(λ)

V F

j−1
X

t=0

X

f,v

E[Qf,v(t)].

We deduce the following, which completes the proof by let-
ting j → ∞:

1

j

j−1
X

t=0

X

f,v

E[Qf,v(t)] ≤ V F (ΩV 2 + 2ξ)

2γdγ(λ)
+

V FE[L(Q(0))]

2jγdγ(λ)
.

Proof of Theorem 4.1. Same as Lemma 3.2 except that
E[ti − ti−1] = m, for i = 0,

Proof of Theorem 5.1. We first let

L1(t) =
X

f

Qf (t)T Rf E[Sf (t)|Q(t)],

L2(t) = −
“

X

f,v

βUf,v(t) −
X

f

Qf (t)T E
h

Af (t)|Qf (t)
i”

.

Using the quadratic Lyapunov function L(t), we get:

∆L(t) = b + 2
“

L1(t) + L2(t) + β
X

f,v

Uf,v(t)
”

. (12)

Now, for a given 0 < ε ≤ λmax, define Λε to be:

Λε , {(λf,v)f,v | (λf,v + ε)f,v ∈ Λ, λf,v ≥ 0,∀f ∈ F , v ∈ V}.

Let λ?(ε) = (λ?
f,v(ε), f ∈ F , v ∈ V) to be the solution of the

optimization problem: max(λf,v)∈Λε Uf,v(λf,v), and we let

λ? = λ?(0), for simplicity. Then, from the similar argument
in [15], we get

∆L(t) = b + 2ξ − 2ε
X

f,v

Qf,v(t)

− 2β
“

X

f,v

U?
f,v(ε) −

X

f,v

Uf,v(t)
”

,

where ε = (ε)v∈V , (λ?)f (ε) = (λ?
f,v(ε), v ∈ V), and U?

f,v(ε) =
Uf,v((λ?

f,v(ε))). Using the technique in the proof of Theo-
rem 3.2 for delay bound and convexity of Uf,v(·) and Jensen’s
inequality, the result follows.

8. REFERENCES
[1] P. Chaporkar, K. Kar, and S. Sarkar. Throughput

guarantees through maximal scheduling in wireless
networks. In Proc. of Allerton, 2005.

[2] P. Chaporkar and S. Sarkar. Stable scheduling policies
for maximizing throughput in generalized constrained
queueing. In Proc. of Infocom, 2006.

[3] L. Chen, S. H. Low, M. Chiang, and J. C. Doyle, Joint
optimal congestion control, routing, and scheduling in
wireless ad hoc networks, In Proc. of Infocom, 2006.

[4] A. Eryilmaz, A. Ozdaglar, and E. Modiano.
Polynomial complexity algorithms for full utilization
of multi-hop wireless networks. In Proc. of Infocom,
2007.

[5] M. Hanckowiak, M. Karonski, and A. Panconesi. On
the distributed complexity of computing maximal
matchings. In Proc. of the ninth annual ACM-SIAM
symposium on discrete algorithms, 1998.

[6] C. Joo and N. B. Shroff. Performance of random
access scheduling schemes in multi-hop wireless
networks. In Proc. of Infocom, 2007.

[7] K. Jung and D. Shah. Low delay scheduling in wireless
network. In Proc. of ISIT, 2007.

[8] A. Kabbani, T. Salonidis, and E. W. Knightly.
Distributed low-complexity maximum-throughput
scheduling for wireless backhaul networks. In Proc. of
Infocom, 2007.

[9] K. Kar, S. Sarkar, and L. Tassiulas. Achieving
proportional fairness using local information in aloha
networks. IEEE Transactions on Automatic Control,
49:1858–1863, 2004.

[10] E. Leonardi, M. Mellia, F. Neri, and M. A. Marsan.
Bounds on delays and queue lengths in input-queued
cell switches. Journal of ACM, 50(4):520–550, 2003.

[11] X. Lin and S. Rasool. Constant-time distributed
scheduling policies for ad hoc wireless networks. In
Proc. of CDC, 2006.

[12] X. Lin and N. B. Shroff. The impact of imperfect
scheduling on cross-layer rate control in wireless
networks. In Proc. of Infocom, 2005.

[13] S. P. Meyn and R. L. Tweedie. Markov chains and
stochastic stability. Springer-Verlag, 1993.

[14] E. Modiano, D. Shah, and G. Zussman. Maximizing
throughput in wireless networks via gossiping. In Proc.
of ACM Sigmetrics, 2006.

[15] M. J. Neely, E. Modiano, and C. Li. Fairness and
optimal stochastic control for heterogeneous networks.
In Proc. of IEEE INFOCOM, 2005.

[16] M. J. Neely, E. Modiano, and C. E. Rohrs. Tradeoffs
in delay guarantees and computation complexity for
nxn packet switches. In Proc. of CISS, 2002.

[17] M. J. Neely, E. Modiano, and C. E. Rohrs. Dynamic
power allocation and routing for time varying wireless
networks. In Proc. of Infocom, 2003.

[18] R. Preis. Linear time 1/2-approximation algorithm for
maximum weighted matching in general graphs. In
Proc. of STOC, 1999.

[19] S. Ray and S. Sarkar. Arbitrary throughput versus
complexity tradeoffs in wireless networks using graph
partitioning. In Proc. of Information Theory and
Applications Second Workshop, 2007.

[20] S. Sanghavi, L. Bui, and R. Srikant. Distributed link
scheduling with constant overhead. In Proc. of ACM
Sigmetrics, 2007.

[21] S. Sarkar and K. Kar. Achieving 2/3 throughput
approximation with sequential maximal scheduling
under primary internference constraints. In Proc. of
Allerton, 2006.

[22] D. Shah and M. Kopikare. Delay bounds for
approximate maximum weight matching algorithms
for input queued switches. In Proc. of Infocom, 2002.

[23] G. Sharma, R. R. Mazumdar, and N. B. Shroff. On
the complexity of scheduling in wireless networks. In
Proc. of Mobicom, 2006.

[24] L. Tassiulas. Linear complexity algorithms for
maximum throughput in radionetworks and input
queued switches. In Proc. of Infocom, 1998.

[25] L. Tassiulas and A. Ephremides. Stability properties
of constrained queueing systems and scheduling for
maximum throughput in multihop radio networks.
IEEE Transactions on Automatic Control,
37(12):1936–1949, December 1992.

[26] V. V. Vazirani. Approximate Algorithms.
Springer-Verlag, 2001.

[27] X. Wu and R. Srikant. Bounds on the capacity region
of multi-hop wireless networks under distributed
greedy scheduling. In Proc. of Infocom, 2006.

[28] Y. Yi and M. Chiang. Stochastic network utility
maximization. European Transactions on
Telecommunications, March, 2008.

[29] Y. Yi and M. Chiang. Wireless scheduling with O(1)
complexity for m-hop interference model. In Proc. of
ICC, 2008.

