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Abstract
This paper studies the problem of parameter learning in probabilistic graphi-

cal models having latent variables, where the standard approach is the expectation
maximization algorithm alternating expectation (E) and maximization (M) steps.
However, both E and M steps are computationally intractable for high dimensional
data, while the substitution of one step to a faster surrogate for combating against
intractability can often cause failure in convergence. We propose a new learning
algorithm which is computationally efficient and provably ensures convergence to
a correct optimum from the multi-time-scale stochastic approximation theory. Its
key idea is to run only a few cycles of Markov Chains (MC) in both E and M steps.
Such an idea of running ‘incomplete’ MC has been well studied only for M step
in the literature, called Contrastive Divergence (CD) learning. While such known
CD-based schemes find approximated solutions via the mean-field approach in E
step, our proposed algorithm does exact ones via MC algorithms in both steps.
Consequently, the former maximizes an approximation (or lower bound) of log-
likelihood, while the latter does the actual one. Despite of the theoretical under-
standings, the proposed scheme might suffer from the slow mixing of MC in E
step. To address the issue, we also propose a hybrid approach adapting both mean-
field and MC approximations in E step, and it outperforms the bare mean-field CD
schemes in our experiments on real-world datasets.

1 Introduction
Graphical model (GM) has been one of powerful paradigms for succinct representa-
tions of joint probability distributions in various scientific fields including information
theory, statistical physics and artificial intelligence. GM represents a joint distribution
of some random variables by a graph structured model where each vertex corresponds
to a random variable and each edge captures the conditional dependence between ran-
dom variables. We study the problem of learning parameters in graphical models hav-
ing latent (or hidden) variables. To this end, a standard learning procedure is the expec-
tation maximization (EM) algorithm alternating expectation (E) and maximization (M)

∗†: Department of Electrical Engineering, KAIST, South Korea, e-mails: hrjang@lanada.kaist.ac.kr,
hyungwon.choi@kaist.ac.kr, yiyung@kaist.edu, jinwoos@kaist.ac.kr. Address for Correspondence: Jinwoo
Shin, KAIST 291, Daehak-ro, Yuseong-gu, Daejeon, 305-701, South Korea.

1

ar
X

iv
:1

60
5.

08
17

4v
2 

 [
cs

.L
G

] 
 1

4 
Fe

b 
20

17



steps, where both involve certain inference tasks. However, they are computationally
intractable for high-dimensional data.

To address the issue, Hinton et al. [1, 2] suggested the so-called (persistent and
non-persistent) Contrastive Divergence (CD) learning algorithms based on the stochas-
tic approximation and mean-field theories. They apply the mean-field approach in E
step, and run an incomplete Markov chain (MC) only few cycles in M step, instead of
running the chain until it converges or mixes. Consequently, the persistent CD max-
imizes (a variational lower bound of) the log-likelihood, and the non-persistent CD
minimizes the reconstruction error induced by a few cycles of MC. The authors also
have demonstrated their performances in deep GMs such as Restricted Boltzmann Ma-
chine (RBM) [3] and Deep Boltzmann Machine (DBM) [4] for various applications,
e.g., image [5], speech [6] and recommendation [7]. In principle, they are applicable
for any GMs with latent variables.

In this paper, we propose a new CD algorithm, called Adiabatic Persistent Con-
trastive Divergence (APCD). The design principle can be understood as a ‘probabilis-
tic’ analogue of the standard adiabatic theorem [8] in quantum mechanics which states
that if a system changes in a reversible manner at an infinitesimally small rate, then it
always remains in its ground state. It is computationally efficient and provably ensures
convergence to a correct optimum of the log-likelihood. While the persistent mean-
field CD maximizes a variational lower bound of the log-likelihood, the proposed al-
gorithm does the actual log-likelihood directly. Our key idea is conceptually simple:
run the exact MC method, instead of the mean-field approximation, in E step as well.
Namely, APCD runs incomplete MCs in both E and M steps simultaneously. We prove
that it converges to a local optimum (or stationary point) of the actual log-likelihood
under mild assumptions by extending a standard stochastic approximation theory [9]
to the one with multi-time-scales. Such guarantee is hard to obtain under the known
mean-field CD learning since it optimizes a biased log-likelihood due to the mean-field
errors.

Despite the theoretical understandings, APCD might perform worse in practice
than the mean-field CD schemes since E step might take long time to converge, i.e.,
slow mixing. To address the issue, we also design a hybrid scheme that utilizes both
the mean-field and MC advantages in E step. Our experiments on real-world image
datasets demonstrate that APCD outperforms the bare mean-field CD scheme under
deep GMs. To our best knowledge, APCD is the first efficient algorithm with provable
convergence to a correct (local) optimum of log-likelihood for general GMs. We antic-
ipate that applications of our new technique will be of interest to various fields where
GMs with latent variables are used for statistical modeling, while some existing deep
learning methods, which often perform similarly as APCD in our experiments, were
designed for more special purposes without theoretical justifications.

There have been theoretical efforts to understand the CD learning in the literature
[10, 11, 12, 13, 14] under the stochastic approximation theory. However, they assume
that either E or M step is computable exactly, while APCD runs incomplete MCs in
both steps simultaneously. Consequently, analyzing APCD becomes much more chal-
lenging since some change in one step to a biased direction can steer the other step
towards a wrong direction. The main contribution of our work is to overcome this
technical challenge by adopting the multi-time-scale stochastic approximation theory.
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We adjust learning rates so that one of E and M steps runs in a faster time-scale than the
other, leading both steps to have correct estimations of the gradient of log-likelihood.

There have also been several efforts to accelerate the CD schemes via alleviating
the slow mixing issue in M step. One of the most popular techniques to boost mixing is
simulated tempering [15] which has also been studied in deep GMs recently [16, 17, 18,
19]. The idea is to run a MC with a slowly decreasing temperature under the intuition
that the high-temperature distributions are more spread out and easier to sample from
than the target distribution. These techniques can also be applicable to the proposed
APCD and hence are orthogonal to our work.

2 Preliminaries

2.1 Graphical model
Exponential family. The exponential family is of our interest, defined as follows. We
first let φ = (φα : α ∈ I) be a collection of real-valued functions φα : X → R called
potential functions (or simply potentials) or sufficient statistics, where X ⊂ Rk is the
set of configurations. We assume that X is a finite set and φ is bounded. For a given
vector of sufficient statistics φ, let θ = (θα : α ∈ I) be an associated vector called
canonical or exponential parameters. For each fixed x ∈ X , we use 〈θ, φ(x)〉 to denote
the inner product of two vectors θ and φ(x), i.e., 〈θ, φ(x)〉 =

∑
α∈I θαφα(x). Using

this notation, the exponential family associated with the set of potentials φ consists of
the following collection of density functions:

pθ(x) = exp{〈θ, φ(x)〉 −A(θ)}, where A(θ) = log
∑
x∈X

exp〈θ, φ(x)〉. (1)

Here, exp{A(θ)} is the normalizing constant called partition function. For a fixed po-
tential vector φ, each parameter vector θ indexes a particular member pθ of the family.
The canonical parameters θ of interest belong to the set Θ := {θ ∈ R|I||A(θ) < +∞}.

We assume regularity and minimality for the exponential family throughout this pa-
per, i.e., Θ is an open set and potential functions (φα : α ∈ I) are linearly independent.
For any regular exponential family, one can obviously check that A(·) is a smooth and
convex function of θ, implying that Θ must be a convex set. The minimality condition
ensures that there exists a unique parameter vector θ associated with each density in
the family.
Mean parameter. It turns out that any exponential family also allows an alternative
parameterization by so-called mean parameter µ = (µα : α ∈ I). For any given
density function pθ, the mean parameter µ associated with a sufficient statistic φ is
defined by the following expectation:

µα = Eθ[φα(X)] =
∑
x∈X

φα(x)pθ(x), for α ∈ I, (2)

where we also defineMφ :=
{
µ ∈ R|I|

∣∣∣ ∃ pθ such that µ =
∑
x∈X φ(x)pθ(x)

}
, i.e.,

Mφ is the set of all realizable mean parameters associated with the given sufficient
statistics φ.
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The gradient of the log partition function A(θ) has the following connection to
mean parameters:

∂A(θ)

∂θα
= Eθ[φα(X)], for α ∈ I, (3)

and therefore ∇A(θ) = µ, i.e., the mean parameters of pθ. This can be viewed as
a forward mapping from θ to µ. One can easily check that ∇A : Θ 7→ M◦ for
any regular and minimal exponential family is a bijection mapping. Moreover, we
denote by θ∗ : M◦ 7→ Θ the inverse map of ∇A, i.e., θ∗(µ) := ∇A−1(θ), thus
µ = Eθ∗(µ)[φ(X)]. The existence and the differentiability of θ∗ is a direct consequence
of the implicit function theorem.

2.2 Expectation maximization
Learning exponential family. For a given potential vector φ, the goal is to learn
exponential parameters θ givenN observed data x := {xn : n = 1, . . . , N}, for which
the popular Maximum Likelihood Estimation (MLE) is used by solving the following
optimization problem:

MLE: θ∗ = arg max
θ∈Θ

l(θ;x), where l(θ;x) :=
1

N

N∑
n=1

log pθ(x
n).

When computing the optimal solution θ∗, the gradient of the log-likelihood l(θ;x) has
the following form due to (1) and (3):

∂l(θ;x)

∂θ
= µ̂− Eθ[φ(X)], where µ̂ :=

1

N

N∑
n=1

φ(xn). (4)

Here, µ̂ is called empirical mean parameter. In many applications of graphical mod-
els, a configuration x ∈ Rk tends to have a high dimension, often partially observed,
thus some units (i.e., coordinates) of x are hidden (or latent). Thus, we denote by
x = (v, h), v ∈ X v, h ∈ X h the entire configuration with visible v and hidden
h configurations, where X v and X h are the domains of visible and hidden ones, re-
spectively. Clearly, X = X v × X h. Then, the probability density function of the
exponential family can be rewritten as pθ(v, h) = exp{〈θ, φ(v, h)〉 − A(θ)}, and
denote by pθ(v) the density of a visible configuration v marginalized over hidden
units, i.e., pθ(v) =

∑
h∈Xh pθ(v, h). In presence of hidden units, for N visible data

v = {vn : n = 1, . . . , N}, one aims at still learning parameters using the maximum
likelihood principle on marginal log-likelihood l(θ;v):

MMLE: θ∗ = arg max
θ∈Θ

l(θ;v), where l(θ;v) =
1

N

N∑
n=1

log pθ(v
n). (5)

Expectation Maximization. A popular approach solving MMLE is the Expectation
Maximization (EM) algorithm. Consider a distribution q = {qn(h) : n = 1, . . . , N}
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over hidden units of each visible data. Using Jensen’s inequality, a lower bound of
l(θ;v) is given by:

l(θ;v) =
1

N

N∑
n=1

log
∑
h∈Xh

qn(h)
pθ(v

n, h)

qn(h)
≥ 1

N

N∑
n=1

∑
h∈Xh

qn(h) log
pθ(v

n, h)

qn(h)

= F(q, θ) :=
1

N

N∑
n=1

( ∑
h∈Xh

qn(h) log pθ(v
n, h) +H(qn)

)
, (6)

where H(q) = −
∑
h∈Xh q(h) log q(h) is the entropy of q. The EM algorithm, con-

sisting of E and M steps, alternates between maximizing the lower bound F(q, θ) with
respect to q and θ, respectively, holding the other fixed: at each t-th iteration,

E step: q(t+1) = arg max
q
F(q, θ(t)) M step: θ(t+1) = arg max

θ
F(q(t+1), θ).

E step reduces to inferring the probability of hidden units for each given observed
data, and it is well known that for exponential family (1), the exact bound holds when
qn(t+1)(h) = pθ(t)(h|vn) for each visible data vn. Then, we compute the expectation of
φ(vn, H), denoted by µ̂n(t+1), where the random variable H for a hidden configuration
has the density pθ(t)(h|vn), and derive the empirical mean parameter µ̂ (as in (4)),
which is used in M step, i.e.,

µ̂n(t+1) :=
∑
h∈Xh

φ(vn, h)pθ(t)(h|v
n).

M step now becomes equal to finding the canonical parameter in MLE (i.e., (4)), which
is due to the fact that the entropy of q does not depend on θ in (6).

Both E and M steps are computationally intractable in general. First, E step requires
deducing probability distribution over hidden units from given canonical parameters,
and exact inference requires exponential time with respect to the number of hidden
units. A similar computational issue also arises in M step. The main contribution of
this paper is to develop a computationally efficient learning algorithm that provably
converges to a stationary point or local optimum of MMLE.

3 Adiabatic persistent contrastive divergence
Now we are ready to present our main results: an algorithm to learn exponential param-
eters θ for a given v and a graph structure, and the theoretical analysis of the algorithm’s
convergence. We first describe the algorithm and then show its provable convergence
guarantee.

3.1 Algorithm description
The formal description of the proposed algorithm is given in Algorithm 1, which

is a randomized version of the EM algorithm using suitable step-size functions a, b :
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Algorithm 1 Adiabatic Persistent Contrastive Divergence (APCD): At each iteration
t = 0, 1, . . . ,

Input: Visible data v = {vn : n = 1, . . . , N},
M : the number of MCs, `: the number of MC transitions to obtain a MC

sample.
Output: Canonical parameter θ(t).
Initialize: Set θ(0) ∈ Θ, and {ĥn,m(0) , x̂

m
(0), µ̂

n
(0) : n = 1, . . . , N,m = 1, . . . ,M}

arbitrarily.

/* E step */
for n = 1 to N do

for m = 1 to M do
E.1. Obtain a random sample ĥn,m(t+1) given ĥn,m(t) by taking ` transitions
of a time-reversible transition matrix KE

θ(t),vn
with the invariant distribution

pθ(t)(h|vn). Formally,

pθ(t)(h|v
n) = pθ(t)(h|v

n)KE
θ(t),vn

and Pr
[
ĥn,m(t+1) = h | ĥn,m(t)

]
= (KE

θ(t),vn
)`
(
ĥn,m(t) , h

)
.

end for
E.2. Update per-data empirical mean parameter µ̂n(t+1) with the step-size a(t):

µ̂n(t+1) = µ̂n(t) + a(t)

(
1

M

M∑
m=1

φ
(
vn, ĥn,m

(t+1)

)
− µ̂n(t)

)
. (7)

end for
E.3. Update the empirical mean parameter as: µ̂(t+1) = 1

N

∑N
n=1 µ̂

n
(t+1).

/* M step */
for m = 1 to M do

M.1. Obtain a random sample x̂m(t+1) given x̂m(t) by running ` transitions of a time-
reversible transition matrixKM

θ(t)
with the invariant distribution pθ(t)(x). Formally

(and similarly to E.1.),

pθ(t)(x) = pθ(t)(x)KM
θ(t)

and Pr
[
x̂m(t+1) = x | x̂m(t)

]
= (KM

θ(t)
)`
(
x̂m(t), x

)
.

end for
M.2. Update the canonical parameter with the step-size b(t) as:

θ(t+1) = θ(t) + b(t)

(
µ̂(t+1) −

1

M

M∑
m=1

φ(x̂m(t+1))

)
. (8)
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Z≥0 → R+. It can be interpreted as stochastic approximation procedures based on MC
method with different time-scales in E and M steps, which we call Adiabatic Persistent
Contrastive Divergence (APCD) algorithm. It first obtains random samples of hidden
nodes and updates the empirical mean parameter vector µ̂ in E step. Then, it obtains
random samples of the entire nodes and updates the parameter θ in M step. We provide
more details in what follows.
E step. In (E.1.) of t-th iteration, for each visible data vn, we first constructM number
of Markov chains with transition matrix KE

θ(t),vn
, each of which has pθ(t)(h|vn) as

a stationary (or invariant) distribution, and obtain a sample ĥn,m(t+1) at m-th MC by

taking ` transitions from the previous configuration ĥn,m(t) , e.g., Gibbs sampling. Each
MC sampling is done by clamping the values of visible nodes to each visible data vn,
and running ` transitions of KE

θ(t),vn
. Then, in (E.2.), the algorithm updates per-data

empirical mean parameter, denoted as µ̂n(t+1), by (i) sample-averaging of corresponding
sufficient statistics, and (ii) moving average with step-size constant a(t). In (E.3.), the
empirical mean parameter µ̂(t+1) is computed by taking its average over data.
M step. In M step of t-th iteration, the algorithm computes stochastic gradient to up-
date the canonical parameter, where the gradient is (4) with empirical mean parameter
of µ̂(t+1). Similarly to (E.1.), in (M.1.), we construct M number of MCs with transi-
tion matrix KM

θ(t)
, each of which has pθ(t)(x) as a stationary distribution, and obtain a

sample x̂m(t+1) at m-th MC by taking ` transitions from the previous configuration x̂m(t).
Note that this step is independent of visible data v. Then, in (M.2.), canonical param-
eters are updated by (i) sample-averaging of entire sufficient statistic vectors, and (ii)
using it in running the gradient-ascent method with step-size constant b(t).

3.2 Convergence analysis
We now state the following convergence property of the proposed APCD algorithm.

Theorem 1. Choose positive step-size functions a(t), b(t) > 0 satisfying∑
t

a(t) =
∑
t

b(t) =∞,
∑
t

(a2
(t) + b2(t)) ≤ ∞,

a(t)

b(t)
→ either 0 or∞. (9)

Assume that {θ(t)} and {µ̂(t)} remain bounded, almost surely. Then, under APCD,
θ(t) almost surely converges to a stationary point of MMLE, i.e., a stationary point of
l(θ;v) in (5).

We remark that the above theorem does not guarantee that APCD converges to a
local optimum, i.e., it might stuck at a saddle point. However, APCD is a stochastic
gradient ascent algorithm and unlikely converges to a saddle point.

The proof of Theorem 1 is given in the supplementary material due to the space
limitation, where we provide its proof sketch in this section. A simple insight is that
the conditions of the step-size functions in Theorem 1 require that MCs in one step
should run in a faster time-scale than those in the other step. When E step takes a
faster time-scale, the faster loop evaluates the averaged empirical distribution for a
given observed visible data v and the slowly-varying parameter value, and the slower
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loop in M step finds the MLE parameter which fits the averaged empirical distribution
evaluated at the faster loop. The examples of step-size functions satisfying (9) include
a(t) = 1/t, b(t) = 1/(1 + t log t), or a(t) = 1/t2/3, b(t) = 1/t.

Proof sketch. Our main proof strategy is to follow the stochastic approximation
procedure with multi-time-scales whose limiting behavior is understood by ordinary
differential equations (ODE) [9]. To this end, define a map from the discrete times of
E and M step to the real ones: α(t) =

∑t−1
i=0 a(i) and β(t) =

∑t−1
i=0 b(i), respectively.

We also denote by {µ̂α(τ), θα(τ) : τ ∈ R+} and {µ̂β(τ), θβ(τ) : τ ∈ R+} the
corresponding continuous-time linear interpolations of {µ̂(t), θ(t) : t ∈ Z≥0} for each
time-scale α and β, respectively. The convergence analysis of APCD is complicated
in the sense that both E and M steps include random Markov processes with different
time-scales, i.e., MC transitions are controlled by the current canonical parameter. Here
we provide a proof sketch when E step has a faster time-scale, i.e., b(t)/a(t) → 0. The
proof when E step has a slower time-scale follows similar arguments.

As the first step, under the faster time-scale α, the updates of the slower loop in M
step will be seen quasi-static for sufficiently large τ . This is because the dynamics of
the slower loop is rewritten as

θ(t+1) = θ(t) + a(t) ·

[
b(t)

a(t)

(
µ̂(t) −

1

M

M∑
m=1

φ(x̂m(t+1))

)]
,

and its limiting ODE system for α is θ̇(τ) = 0. Then, the dynamics of E step µ̂α(τ)
tracks the following ODE system of µ(τ), where the behavior of the slower loop (M
step) is fixed to a quasi-static value, say θ, and the MC in E step is seen equilibrated
with its invariant distribution pθ(h|v)1:

µ̇(τ) =
∑
h∈Xh

φ(v, h)pθ(h|v)− µ(τ). (10)

We analyze asymptotic convergence of the faster loop by showing that the ODE (10)
has a unique fixed point µ̂∗(θ;v) :=

∑
h∈Xh φ(v, h)pθ(h|v), i.e., the expectation of

empirical mean parameter over the distribution pθ(h|v), thus we have almost surely
µ̂(t) → µ̂∗(θ;v).

As the second step, under the slower time-scale β, the behavior of the faster loop
µ̂β(τ) would appear to be equilibrated for the current quasi-static θβ(τ), i.e., µ̂β(τ) ≈
µ̂∗(θβ(τ);v). Then, the dynamics of M step θβ(τ) tracks the following ODE system
of θ(τ), where the behavior of the faster loop and MC in M step are equilibrated to
µ̂∗(θ(τ);v) and pθ(τ)(x), respectively:

θ̇(τ) = µ̂∗(θ(τ);v)−
∑
x∈X

φ(x)pθ(τ)(x). (11)

We show that the ODE (11) has a Lyapunov function V (θ) = −l(θ; µ̂∗(θ;v)), specif-
ically a negative log-likelihood with empirical mean parameter µ̂∗(θ;v), which is in-
deed a marginal log-likelihood l(θ;v). Then, from the known results on Lyapunov

1For simplicity, we use f(v) to denote the average over observed data, i.e., 1
N

∑N
n=1 f(v

n).
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function of stochastic approximation procedure, we have almost surely θ(t) → {θ :
∂θV (θ) = 0}. Combining these results, we derive that under APCD, θ(t) almost surely
converges to a stationary point of MMLE.

4 Experimental results
We compare the APCD algorithm with the popular mean-field persistent contrastive
divergence (MFPCD) algorithm [1, 2, 4], where they differ only in E step. We consider
the pairwise binary graphical model over graph G = (V,E):

pθ(x) ∝ exp

∑
i∈V

θixi +
∑

(i,j)∈E

θijxixj


for x ∈ {0, 1}|V |. We first consider grid models with randomly selected hidden units
for synthetic datasets in Section 4.1, and then consider Deep Boltzmann Machine
(DBM) [4] with two hidden layers for real-world image datasets, MNIST, OCR let-
ters, Frey Face, and Toronto Face (TF) in Section 4.2.
Basic setup. We commonly use the popular Gibbs sampler for the time-reversible
transition matrix in both E and M steps. In M step of both MFPCD and APCD, we use
` = 10, M = 100 as in [4]. In E step of APCD, we use ` = 100, M = 1 for the update
of the per-data empirical mean parameter, while we run 30 mean-field iterations in E
step of MFPCD. In addition, we choose step-sizes which decreases linearly at every
epoch but with different speed for E and M step, as Theorem 1 suggested. Specifically,
we use the popular choice of b(t) in M step, which is well studied in MFPCD, and
choose a(t) decaying 10 times faster. Then, APCD is slower than MFPCD by roughly
3 times in E step, and in overall, 2 ∼ 3 times slower per each epoch in our simulation.

4.1 Shallow models on synthetic datasets
We report our experimental results of APCD for the two dimensional grid graph G
of size |V | = 30 × 30, where [θi]i∈V is set to random values in range [−3.0, 3.0] and
[θij ](i,j)∈E is set to random Gaussian values with mean 0 and variance 0.5. Then, under
the random choice of parameters, we generate 2, 000 synthetic samples for training and
another 2, 000 samples for test by running the Gibbs sampler with 50, 000 iterations
for each. We consider two models, each with a different portion of hidden variables:
among 30 × 30 variables, we randomly select 50% and 20% of them as hidden ones.
We train the synthetic dataset by AFCD and MFPCD equally for 300 epochs. For M
step, the initial learning rate (i.e., step-size) is set to be 0.001 and decay gradually to
0.0001. That for E step starts from 1 and decreases to 0.05, so that we run E step at
a faster time-scale. Finally, we generate 2, 000 samples from each trained model and
use Parzen window density estimation [20] to measure the average log-likelihood of
the test data. The σ parameter in the Parzen method is cross validated, where we use
20% of the training set as validation.
Generative performance. For the first 50%-hidden model, the Parzen log-likelihood
estimates for APCD and MFPCD are−149.79±0.35 and−153.70±0.33 (± indicates
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Figure 1: Generative performances in grid and deep models per training epoch.

the standard error of the mean computed across examples). On the other hand, the
Parzen measure obtained on the training set is −148.90 ± 0.35, i.e., close to that of
APCD. As reported in Figure 1a, APCD starts to outperform MFPCD after 50 training
epochs. The Parzen estimates for the second 20%-hidden model trained by APCD
and MFPCD are −256.10 ± 0.41 and −260.16 ± 0.41, respectively. In this case, the
reference measure on the training set is −254.26 ± 0.42. These results demonstrate
that APCD provides major improvements over MFPCD in these synthetic settings.

4.2 Deep models on real-world datasets
We now report our experimental results of APCD for Deep Boltzmann Machine (DBM).
We train two-hidden-layer DBM on the following datasets: MNIST, OCR letters, Frey
Face, and Toronto Face (TF). MNIST dataset contains 60, 000 training images and
10, 000 test images of handwritten digits. We use 10,000 images from the training set
for validation. OCR letters dataset consists of images of 26 English characters. The
dataset is split into 32, 152 training, 10, 000 validation, and 10, 000 test samples. Frey
Face and TF datasets are both real-valued grey-scale images of human faces. While
Frey is relatively small, containing 1, 965 images in total, TF contains almost 100, 000
images. For Frey, we use 1, 800 images for training and 10% of the training set as
validation. For TF, we follow the splits provided by the dataset.

In order to train a 2-layer DBM with MFPCD, we follow the same hyperparameter
settings as described in [4, 21] for MNIST and OCR. For Frey and TF, the model
architecture used in our experiments is 560-200-400 and 2304-500-1000, respectively.
Pretraining of DBM is performed for 100 epochs over the training set2 and the global
training is done for 500, 200, 200, and 400 epochs for MNIST, OCR, Frey and TF,
with minibatch size of 100. For M step, the initial learning rate is set to be 0.005 and
decay gradually to 0.0001 as training progresses. For the DBM experiments, we use

2For Frey and TF, we use Gaussian-Binary Restricted Boltzmann Machines (GBRBM) for pretraining
as described in [22].
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Table 1: Generative performances of MFPCD and H-APCD. (a) Test log-likelihood of
1, 000 random samples from the test set measured by running separate 100 AIS runs
per data. (b) Parzen window-based log-likelihood estimates conducted as in [24].

MNIST OCR

MFPCD −84.31 −31.13

H-APCD −83.93 −29.59

(a)

MNIST OCR Frey TF

DBN[25] 138± 2 . . 1909± 66

Stackted CAE[26] 121± 1.6 . . 2110± 50

Deep GSN[27] 214± 1.1 . . 1890± 29

GAN[24] 225± 2 . . 2057± 26

MFPCD 239.48± 1.7 −52.68± 0.3 659± 11 1939± 28

H-APCD 239.24± 2.1 −52.66± 0.4 684± 11 1985± 42

True 244± 1.9 −27± 0.4 931± 18 2119± 23

(b)

Annealed Importance Sampling (AIS) [23] and Parzen window density estimation to
measure the average log-likelihood of the test data.

In APCD, we basically follow the same hyperparameters of MFPCD in M step.
The E step learning rate starts from a large value close to 1, and decreases slowly to
0.05. We also design the following practical hybrid training scheme for DBM, which
we call Hybrid APCD (H-APCD). We first train DBM via MFCD in the first halfway
in the whole training steps. Then, in the second half, we take the weighted sum of
the probabilities computed from APCD and MFPCD, where the ratio of such fusion
gradually changes not to favor MFPCD as training progresses. The reason why we
take such a hybrid approach of APCD and MFPCD is due to our observation that
estimations of E steps in APCD are initially bad in large DBMs due to the mixing
issue. We note that for grid graphs in the previous section, such a hybrid training is not
necessary since the models are relatively small.
Generative performance. In Table 1, we compare the average test log-likelihood of
MFPCD and H-APCD along with other previous works. For MNIST and OCR, we first
run AIS 100 times to estimate the model partition function. Then, we run 100 AIS runs
separately for each test sample to estimate the test log-likelihood. We randomly sample
1, 000 images3 from the test set to measure the average test log-likelihood. For Frey
and TF, we only report Parzen estimates since calculating the log-likelihood using AIS
with Gaussian DBM is not straightforward. "True" in Table 1 is computed by running
Parzen estimates on 10,000 random samples from the training set. We generate 10, 000
samples from each trained model for Parzen estimates.

For MNIST and OCR, H-APCD exceeds MFPCD in terms of test log-likelihood

3 We measure the true log-likelihood instead of its variational bound (although it takes much more time)
for fair comparison between APCD and MFPCD.
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of 1, 000 test samples measured by AIS, and performs similarly on Parzen estimates.
Figure 1b shows the average test log-likelihood of MFPCD and H-APCD trained model
in every 10 epochs on MNIST dataset. The log-likelihood of H-APCD exceeds that of
MFPCD after a small amount of training steps and the gap continues to exist until the
end of the training. For Frey and TF, H-APCD performs well with a larger margin. The
result is comparable to other previous works as well as the true Parzen estimates.

5 Conclusion
In this paper, we propose a new efficient algorithm for parameter learning in graph-
ical models with latent variables. Unlike other known similar methods, it provably
converges to a correct optimum. We believe that our techniques based on the multi-
time-scale stochastic approximation theory should be of broader interest for designing
and analyzing similar algorithms.

References
[1] M. Welling and G. E. Hinton. A new learning algorithm for mean field boltzmann ma-

chines. In Artificial Neural Networks—ICANN 2002, pages 351–357. Springer, 2002.

[2] T. Tieleman. Training restricted boltzmann machines using approximations to the likeli-
hood gradient. In Proceedings of the International Conference on Machine Learning, pages
1064–1071, 2008.

[3] P. Smolensky. Information processing in dynamical systems: Foundations of harmony the-
ory. In D. E. Rumelhart, J. L. McClelland, et al., editors, Parallel Distributed Processing,
pages 194–281. MIT Press, 1987.

[4] R. Salakhutdinov and G. E. Hinton. Deep boltzmann machines. In Proceedings of the
International Conference on Artificial Intelligence and Statistics, pages 448–455, 2009.

[5] H. Larochelle and Y. Bengio. Classification using discriminative restricted boltzmann ma-
chines. In Proceedings of the International Conference on Machine Learning, pages 536–
543, 2008.

[6] G. Dahl, A. R. Mohamed, and G. E. Hinton. Phone recognition with the mean-covariance
restricted boltzmann machine. In Proceedings of the Advances in Neural Information Pro-
cessing Systems, pages 469–477, 2010.

[7] R. Salakhutdinov, A. Mnih, and G. E. Hinton. Restricted boltzmann machines for collab-
orative filtering. In Proceedings of the International Conference on Machine Learning,
pages 791–798, 2007.

[8] M. Born and V. A. Fock. Beweis des adiabatensatzes. Zeitschrift fur Physik a Hadrons and
Nuclei, 51(3-4):165–180, 1928.

[9] V. S. Borkar, editor. Stochastic Approximation: A Dynamical Systems Viewpoint. Cam-
bridge University Press, 2008.

[10] B. Delyon, M. Lavielle, and E. Moulines. Convergence of a stochastic approximation
version of the EM algorithm. Annals of Statistics, 27(1):94–128, 1999.

[11] E. Kuhn and M. Lavielle. Coupling a stochastic approximation version of EM with an
mcmc procedure. ESAIM: Probability and Statistics, 8:115–131, 2004.

12



[12] L. Younes. On the convergence of markovian stochastic algorithms with rapidly decreas-
ing ergodicity rates. Stochastics: An International Journal of Probability and Stochastic
Processes, 65(3-4):177–228, 1999.

[13] A. Yuille. The convergence of contrastive divergences. In Proceedings of the Advances in
Neural Information Processing Systems, 2004.

[14] I. Sutskever and T. Tieleman. On the convergence properties of contrastive divergence. In
Proceedings of the International Conference on Artificial Intelligence and Statistics, pages
789–795, 2010.

[15] E. Marinari and G. Parisi. Simulated tempering: a new Monte Carlo scheme. EPL (Euro-
physics Letters), 19(6):451, 1992.

[16] G. Desjardins, A. Courville, Y. Bengio, P. Vincent, and O. Delalleau. Tempered Markov
chain Monte Carlo for training of restricted Boltzmann machines. In Proceedings of the
International Conference on Artificial Intelligence and Statistics, pages 145–152, 2010.

[17] R. Salakhutdinov. Learning in Markov random fields using tempered transitions. In Pro-
ceedings of the Advances in Neural Information Processing Systems, pages 1598–1606,
2009.

[18] K. Cho, T. Raiko, and A. Ilin. Parallel tempering is efficient for learning restricted Boltz-
mann machines. In Proceedings of the International Joint Conference on Neural Networks,
pages 1–8, 2010.

[19] R. Salakhutdinov. Learning deep Boltzmann machines using adaptive MCMC. In Proceed-
ings of the International Conference on Machine Learning, pages 943–950, 2010.

[20] O. Breuleux, Y. Bengio, and P. Vincent. Quickly generating representative samples from
an rbm-derived process. Neural Computation, 23(8):2058–2073, 2011.

[21] R. Salakhutdinov and H. Larochelle. Efficient learning of deep botlzmann machines. In
Proceedings of the International Conference on Artificial Intelligence and Statistics, pages
693–700, 2010.

[22] V. Nair and G. E. Hinton. Implicit mixtures of restricted boltzmann machines. In Pro-
ceedings of the Advances in Neural Information Processing Systems, pages 1145–1152,
2009.

[23] R. M. Neal. Annealed importance sampling. Statistics and Computing, 11(2):125–139,
2001.

[24] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial nets. In Proceedings of the Advances in Neural
Information Processing Systems, pages 2672–2680, 2014.

[25] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets.
Neural computation, 18(7):1527–1554, 2006.

[26] Y. Bengio, G. Mesnil, Y. Dauphin, and S. Rifai. Better mixing via deep representations. In
Proceedings of the International Conference on Machine Learning, pages 552–560, 2013.

[27] Y. Bengio, E. Laufer, G. Alain, and J. Yosinski. Deep generative stochastic networks train-
able by backprop. In Proceedings of the International Conference on Machine Learning,
pages 226–234, 2014.

[28] A. Proutiere, Y. Yi, T. Lan, and M. Chiang. Resource allocation over network dynam-
ics without timescale separation. In Proceedings of the 29th Conference on Information
Communications (INFOCOM 2010), pages 406–410. IEEE Press, 2010.

13



Appendix: Proof of Theorem 1
The convergence analysis of the Adiabatic Persistent Contrastive Divergence (APCD)
is on the strength of multi-time-scale stochastic approximation theory. As we men-
tioned in Section 3, our algorithm is interpreted as a stochastic approximation proce-
dure with controlled Markov processes. In this supplementary material, we first pro-
vide the convergence analysis of a general stochastic approximation procedure (i.e.,
with single time-scale) with a controlled Markov process in Section A, where an ordi-
nary differential equation (ODE) is usefully utilized to study the limiting behavior of
the system states. Then, in Section B, we non-trivially extend this framework to the
APCD algorithm, where the step-size conditions in Theorem 1, controlling the speed of
the two dynamics in E and M steps respectively, are the key to the convergence proof.

A Preliminary: stochastic approximation with controlled
Markov process

Consider a discrete-time stochastic process {x(t) : t ∈ Z≥0} with the following form:

x(t+1) = x(t) + a(t) · v(x(t), Y(t+1)), ∀t ∈ Z≥0, (12)

where x(t) ∈ RL is the system state at the iteration t, a(t) corresponds to the step-
size, and the system has a Markov process taking values in finite space Z with control
process x(t), i.e., with a controlled transition kernel Kx(t) . At iteration t, the Markov
process generates M realizations {ẑm(t+1) : m = 1, · · · ,M} from the succession of `
cycles of the transition kernel Kx(t)(ẑm(t), ·), i.e.,

Pr
[
ẑm(t+1) = z | ẑm(t)

]
= (Kx(t))`

(
ẑm(t), z

)
.

Then, the observation Y(t+1) is a function of the random samples {ẑm(t+1)} as:

Y(t+1) =
1

M

M∑
m=1

f(ẑm(t+1)).

This is often called stochastic approximation with controlled Markov process [9]. We
shall assume that if x(t) = x, ∀t for a fixed x ∈ RL, the Markov process is irreducible
and ergodic with unique invariant distribution πx, and let ζx(dy) denote by the station-
ary distribution of 1

M

∑M
m=1 f(ẑm), where {ẑm} are drawn from the Markov process

controlled by x. In addition, we assume that:
(C1) For any x ∈ RL, x 7→ Kx is continuous and x 7→ πx is Lipschitz continuous.
(C2) The function f : Z 7→ RK is a bounded, and v(x, Y ) : RL+K 7→ RL is a

bounded Lipschitz continuous in x and uniformly over Y .
(C3) Almost surely, {x(t)} remains bounded.
(C4) {a(t)} is a decreasing sequence of positive number such that

∑
t a(t) = ∞ and∑

t a
2
(t) <∞.
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Note that there exist many dynamical MC-based procedures, e.g., Gibbs sampler, Metropolis-
Hasting algorithm and variants, which provide property of (C1), and (C3) can be im-
posed by projecting the process to a bounded subset of RL. The example choices of a
step-size (or learning rate) function include a(t) = 1

t ,
1
t2/3

, 1
1+t log t .

Now, define α(t) =
∑t−1
i=0 a(i). We take a continuous-time pairwise linear inter-

polation of the system state {x(t) : t ∈ Z≥0} under the time-scale α in the following
way: define {xα(τ) : τ ∈ R+} as: ∀t ∈ Z≥0, for all τ ∈ [α(t), α(t+ 1)),

xα(τ) = x(t) + (x(t+1) − x(t))×
τ − α(t)

α(t+ 1)− α(t)
. (13)

Remark 1. Intuitively, for a decreasing step-size a(t), the interpolated continuous
trajectory xα(τ) is an accelerated version of the original trajectory x(t). Note that as
the decreasing speed of a(t) becomes faster, i.e., a(t) → 0 at a faster rate, the stochastic
process (12) moves on a slower time-scale.

Now, the following theorem provides the convergence analysis of the stochastic
approximation procedure with controlled Markov process (12).

Theorem 2 (Theorem 1 of [28], Corollary 8 in Chapter 6.3 of [9]). Suppose that as-
sumptions (C1)-(C4) hold. Let T > 0, and denote by x̃s(·) the solution on [s, s + T ]
of the following ordinary differential equation (ODE):

ẋ(τ) =

∫
y

v(x(τ), y) · ζx(τ)(dy), with x̃s(s) = xα(s), (14)

Then, we have almost surely,

lim
s→∞

sup
τ∈[s,s+T ]

‖xα(τ)− x̃s(τ)‖ = 0.

Moreover, x(t) converge a.s. to an internally chain transitive invariant set of the ODE
(14).

Note that since the Markov process is irreducible and ergodic, and f is continuous
and bounded, we have almost surely,∫

y

v(x, y)ζx(dy) =
∑
z∈Z

v(x, f(z))πx(z).

Therefore, the ODE (14) becomes the following simpler form, which will be used later
in the proof of Theorem 1:

ẋ(τ) =
∑
z∈Z

v(x(τ), f(z))πx(τ)(z). (15)
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Remark 2. We comment that there exists a slight difference between the model of
this section and that of in [28] and [9]: The controlled Markov process is a discrete-
time one in our setup, whereas it is a continuous-time one in [9, 28], requiring just a
simple modification of the proof.

Theorem 2 states that as time evolves, the dynamics of the underlying Markov
process is averaged due to the decreasing step-size, thus “almost reaching the stationary
regime”. Thus, it suffices to see how the ODE (15) behaves. In particular, when the
ODE (15) has the unique fixed stable equilibrium point x∗, we have almost surely:
x(t) → x∗ as t → ∞. If the ODE (15) has a Lyapunov function, then every internally
chain transitive invariant lies in the Lyapunov set, and thus the process (12) converges
to the largest internally chain transitive invariant set.

B Proof of Theorem 1
We now prove the convergence of Algorithm 1 by showing that it is a multi-time-scale
stochastic approximation procedure with controlled Markov process. We will use some
result that works for general multi-time-scale stochastic approximation procedure [9].
To that end, we rewrite E and M step of APCD into following form:

E step: µ̂(t+1) = µ̂(t) + a(t) · g
(
µ̂(t), θ(t), H(t+1)

)
, (16)

M step: θ(t+1) = θ(t) + b(t) · u
(
µ̂(t), θ(t), X(t+1)

)
, (17)

where

g(µ̂, θ,H) = H − µ̂, u(µ̂, θ,X) = µ̂−X,

with

H(t+1) =
1

N

N∑
n=1

Hn
(t+1), Hn

(t+1) =
1

M

M∑
m=1

φ(vn, ĥn,m(t+1)), X(t+1) =
1

M

M∑
m=1

φ(x̂m(t+1)).

Note that for each visible data vn, {ĥn,m(t+1) : m = 1, · · · ,M} are samples generated
from the successive ` cycles of transition matrix KE

θ(t),vn
in E step, and {x̂m(t+1) : m =

1, · · · ,M} are samples generated from the successive ` cycles of transition matrix
KM
θ(t)

in M step. One can easily check that u(·), g(·) are bounded Lipschitz continuous
for exponential family with bounded sufficient statistics φ.

We now analyze the coupled stochastic approximation procedures (16) and (17),
under the following two “time-scales” with different speed: (i) α(t) =

∑t−1
i=0 a(i) and

(ii) β(t) =
∑t−1
i=0 b(i). We denote by {µ̂α(τ), θα(τ) : τ ∈ R+} and {µ̂β(τ), θβ(τ) :

τ ∈ R+} the corresponding continuous-time interpolations of {µ̂(t), θ(t) : t ∈ Z≥0}
according to (13) for time-scales α and β, respectively. The condition a(t)

b(t)
→ 0 or
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a(t)
b(t)
→ ∞ in Theorem 1 implies that the decreasing speed of two steps are different:

i.e., one step should run in a faster time-scale than the other step. If a(t)
b(t)
→ 0, E step

moves at a slower time-scale than M step, and if a(t)b(t)
→∞, i.e., equivalently b(t)

a(t)
→ 0,

E step moves at a faster time-scale than M step.

B.1 Case 1: a(t)
b(t)
→ 0

From the hypothesis a(t)
b(t)
→ 0, we can first prove the following two properties:

P1. For all T > 0, almost surely4,

lim
s→∞

sup
τ∈[s,s+T ]

‖µ̂β(τ)− µ̂β(s)‖ = 0. (18)

P2. Almost surely,

lim
τ→∞

‖θα(τ)− θ∗(µ̂α(τ))‖ = 0.

P1 states that µ̂β(τ) almost behaves like a constant after a sufficient number of
iterations. This is due to the fact that µ̂(t) is updated by the step-size a(t), but µ̂β(τ) is
the trajectory made by the faster time-scale of b(t). More formally, by rewriting (16),
we have:

µ̂(t+1) = µ̂(t) + b(t) ·
[
a(t)

b(t)
g

(
µ̂(t), θ(t), H(t+1)

)]
,

and thus it is obvious that its limiting ODE is µ̇(τ) = 0. Then, the property P1 im-
mediately holds. P2 implies that θα(τ) is asymptotically close to a unique fixed point
θ∗(µ̂α(τ)), a MLE parameter in (4) for a given empirical mean parameter µ̂α(τ). Note
that for a regular and minimal exponential family, the map θ∗(·) is a bijection mapping,
see Section 2.1. In the rest of the proof, we first show P2 in Step 1, and then in Step 2,
we complete the proof of Case 1 using P1 and P2.

Step 1: Understanding the asymptotic behavior of the system at the faster time-scale β.
We now introduce {θsβ(τ) : τ ∈ R+}, which interpolates {θs(t) : t ∈ Z≥0} (simi-

larly to (13)), where {θs(t) : t ∈ Z≥0} is constructed such that with s ∈ R, θs(t) = θ(t)

for s ≥ β(t), and

θs(t+1) = θs(t) + b(t) · u
(
µ̂β(s), θs(t), X(t+1)

)
, (19)

for s < β(t). Note that (19) is different to (17) in that µ̂(t) is fixed to µ̂β(s). Then,
from the Lipschitz continuity of u(·), we get that for all T > 0:

lim
s→∞

sup
τ∈[s,s+T ]

‖θsβ(τ)− θβ(τ)‖ = 0. (20)

4Here, || · || corresponds to the L2-norm.
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Now, we will compare θsβ(τ) to the solution trajectory of the following ODE, as in
(15) of Section A:

θ̇(τ) = u†(θ(τ)) :=
∑
x∈X

u

(
µ̂β(s), θ(τ), φ(x)

)
pθ(τ)(x). (21)

To explain how our setup matches with that in Section A, let θ̃s(τ) be the solution on
[s, s + T ] (for T > 0) of the ODE (21) with θ̃s(s) = θsβ(s). It is clear that {θs(t) : t ∈
Z≥0} is a discrete-time stochastic process with controlled Markov process considered
in (12) for s ≤ β(t). We can verify that the assumptions (C1)-(C4) are satisfied. First,
the MC sampler in M step KM

θ induces an ergodic Markov chain taking values in a
finite set X , which satisfies the detailed balance property with respect to pθ(x) in (1)
for a fixed θ ∈ Θ, e.g., Gibbs sampler. (C1) is verified with our choice of KM

θ . (C2) is
verified since sufficient statistics φ is bounded. (C3) is the assumption of Theorem 1,
where some techniques for establishing this stability condition has been studied, see
Chapter 3 of [9]. Finally, (C4) is verified with our choice of b(t). Then, we have that
for all T > 0,

lim
s→∞

sup
τ∈[s,s+T ]

‖θβ(τ)− θ̃s(τ)‖ = 0, a.s..

This is a direct consequence of Theorem 2 and (20).
Now, for any regular and minimal exponential family, the ODE system (21) has a

unique fixed point θ∗ = θ∗(µ̂β(s)), i.e., a MLE parameter in (4) for a given empirical
mean parameter µ̂β(s), due to the fact that

u†(θ(τ)) = µ̂β(s)− Eθ(τ)[φ(X)] = ∇l(θ(τ); µ̂β(s)).

Then, we apply the following Lemma in Chapter 6.1 of [9]:

Lemma B.1 (Lemma 1 in Chapter 6.1 of [9]).

(µ̂(t), θ(t))→ {(µ̂, θ∗(µ̂)) : µ̂ ∈M◦}, a.s..

In other words, we have almost surely,

‖θ(t) − θ∗(µ̂(t))‖ → 0, (22)

which in turn implies that under the slower time-scale α, we also have almost surely,

lim
τ→∞

‖θα(τ)− θ∗(µ̂α(τ))‖ = 0. (23)

This completes the proof of P2.

Step 2. Understanding the asymptotic behavior of the system at the slower time-scale α.
We start by introducing {µ̂sα(τ); τ ∈ R+} (similar to θsβ(τ) in Step 1), which

interpolates {µ̂s(t) : t ∈ Z≥0}, where it is constructed such that with s ∈ R, µ̂s(t) = µ̂(t)

for s ≥ α(t), and

µ̂s(t+1) = µ̂s(t) + a(t) · g
(
µ̂s(t), θ

∗(µ̂s(t)), H(t+1)

)
,
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for s < α(t). Note that (24) is different to (16) in that θ(t) is fixed to θ∗(µ̂s(t)). Then,
from (23) and the fact that g(·) is Lipschitz continuous, it follows that for all T > 0,

lim
s→∞

sup
τ∈[s,s+T ]

‖µ̂sα(τ)− µ̂α(τ)‖ = 0. (24)

Now, we compare µ̂sα(τ) to the solution trajectory of the following ODE, as in
Section A:

µ̇(τ) = g†(µ(τ)) :=
∑
h∈Xh

g

(
µ(τ), θ∗(µ(τ)), φ(v, h)

)
pθ∗(µ(τ))(h|v). (25)

It is clear that the process {µ̂s(t) : t ∈ Z≥0} is also a discrete-time stochastic process
with controlled Markov process considered in (12) for s ≤ α(t). The assumptions
(C1)-(C4) are verified as follows: The MC sampler in E step KE

θ,v
5 induces an ergodic

Markov chain taking values in a finite set X h, which satisfies the detailed balance
property with respect to pθ(h|v) for a fixed θ ∈ Θ, e.g., Gibbs sampler. With our
choice of KE

θ,v, since φ is bounded and θ∗(·) is continuous, we have µ̂ 7→ pθ∗(µ̂)(h|v)
and becomes Lipschitz continuous, i.e., (C1) is verified. (C2),(C3) are verified since φ
is bounded. Finally, (C4) is verified with our choice of a(t). Let denote by µ̃s(τ) be
the solution on [s, s+ T ] (for any T > 0) of the ODE (25) with µ̃s(s) = µ̂sα(s). Then,
we now have that for all T > 0,

lim
s→∞

sup
τ∈[s,s+T ]

‖µ̂α(τ)− µ̃s(τ)‖ = 0, a.s.,

which is a direct consequence of Theorem 2 and (24).
Next, we claim that there exists a Lyapunov function of the ODE (25).

Lemma B.2. Assume that exponential family (θ, φ) has regularity, minimality and
bounded sufficient statistics. Then, V (µ̂) = −l(θ∗(µ̂);v) is a Lyapunov function of the
ODE (25): i.e., V (µ̂) is a function such that
(a) For all µ̂ ∈M, F (µ̂) := 〈∂µ̂V (µ̂), g†(µ̂)〉 ≤ 0,

(b) V ({µ̂ : F (µ̂) = 0}) has an empty interior.
Moreover,

{µ̂ : F (µ̂) = 0} = {µ̂ : ∂µ̂V (µ̂) = 0} and θ∗({µ̂ : F (µ̂) = 0}) = {θ ∈ Θ : ∂θl(θ;v) = 0}.

Remark 3. Lemma B.2 is an application of Lemma 2 presented in [10], which gives
a result about Lyapunov function of the ODE system of the form (25). We omit the
formal proof of Lemma B.2 since the assumptions of Lemma 2 in [10] are shortly
verified for a regular and minimal exponential family with bounded sufficient statistics.

We now use the following result in [9] at our framework to discuss the convergence
guarantee of {µ̂(t) : t ∈ Z≥0} and the convergence point characterization.

5For simplicity, we denote the set of KE
θ,vn for each visible data vn by KE

θ,v .
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Lemma B.3 (Corollary 3 in Chapter 2.2 of [9]). Under the assumption that {µ̂(t)}
remains bounded, {µ̂(t)} almost surely converges to an internally chain transitive in-
variant set contained in {µ̂ ∈M◦ : F (µ̂) = 0}.

By Lemma B.2 and Lemma B.3, it follows that

µ̂(t) → {µ̂ : ∂µ̂V (µ̂) = 0}, a.s.. (26)

This completes the proof of Step 2.

Combining Step 1 and Step 2, i.e., from (22) and (26), we complete the proof for
Case 1 of Theorem 1 that under APCD, θ(t) almost surely converges to a stationary
point of MMLE: i.e.,

θ(t) → {θ : ∂θl(θ;v) = 0}, a.s..

B.2 Case 2: a(t)
b(t)
→∞

In Case 2, we have following two properties:
P1. For all T > 0, almost surely,

lim
s→∞

sup
τ∈[s,s+T ]

‖θα(τ)− θα(s)‖ = 0. (27)

P2. Almost surely,

lim
τ→∞

‖µ̂β(τ)− µ̂∗(θβ(τ);v)‖ = 0.

P1 states that θα(τ) almost behaves like a constant after a sufficient number of
iterations. This is due to the fact that θ(t) is updated by the step-size b(t), but θα(τ) is
the trajectory made by the slower time-scale of a(t). More formally, rewriting (16), we
have:

θ(t+1) = θ(t) + a(t) ·
[
b(t)

a(t)
u

(
µ̂(t), θ(t), X(t+1)

)]
,

and thus it is obvious that its limiting ODE is θ̇(τ) = 0. Then, the property P1
immediately holds. P2 implies that µ̂β(τ) is asymptotically close to a unique fixed
point µ̂∗(θβ(τ);v), the expectation of empirical mean parameter over the distribution
pθβ(τ)(h|v) for a given θβ(τ) and v. It is clear that the map µ̂∗(·;v) is a bijection for a
regular and minimal exponential family. In the rest of the proof, as in Case 1, we first
show P2 in the first step, and then in the second step, we complete the proof using P1
and P2.

Step 1: Understanding the asymptotic behavior of the system at the faster time-scale α.
We introduce {µ̂sα(τ) : τ ∈ R+}, which interpolates {µ̂s(t) : t ∈ Z≥0}, where

{µ̂s(t) : t ∈ Z≥0} is constructed such that with s ∈ R, µ̂s(t) = µ̂(t) for s ≥ α(t), and

µ̂s(t+1) = µ̂s(t) + a(t) · g
(
µ̂s(t), θα(s), H(t+1)

)
, (28)
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for s < α(t). Note that (28) is slightly different to (16) in that θ(t) is fixed to θα(s).
Then, from the Lipschitz continuity of g(·), we get that for all T > 0:

lim
s→∞

sup
τ∈[s,s+T ]

‖µ̂sα(τ)− µ̂α(τ)‖ = 0. (29)

Now, we will compare µ̂sα(τ) to the solution trajectory of the following ODE, as in
Section A:

µ̇(τ) = g‡(µ(τ)) :=
∑
h∈Xh

g

(
µ(τ), θα(s), φ(v, h)

)
pθα(s)(h|v). (30)

To see how the setup matches with that in Section A, let µ̃s(τ) be the solution on
[s, s + T ] (for T > 0) of the ODE (30) with µ̃s(s) = µ̂sα(s). Then, {µ̂s(t) : t ∈ Z≥0}
is a discrete-time stochastic process with controlled Markov process considered in (12)
for s ≤ α(t). We can verify that the assumptions (C1)-(C4) are satisfied as we verified
in the proof for Case 1. Then, we have that for all T > 0,

lim
s→∞

sup
τ∈[s,s+T ]

‖µ̂α(τ)− µ̃s(τ)‖ = 0, a.s.,

which is a direct consequence of Theorem 2 and (29).
Here, it is clear that the ODE system (30) has a unique fixed point µ̂∗ = µ̂∗(θα(s);v),

i.e., the expectation of empirical mean parameter over pθα(s)(·|v), from the fact that

g‡(µ(τ)) = Eθα(s),v[φ(v, H)]− µ(τ).

Then, by applying Lemma B.1 to this framework we have almost surely,

‖µ̂(t) − µ̂∗(θ(t);v)‖ → 0, (31)

which in turn implies that under the slower time-scale β, we also have almost surely,

lim
τ→∞

‖µ̂β(τ)− µ̂∗(θβ(τ);v)‖ = 0. (32)

This completes the proof of P2.

Step 2. Understanding the asymptotic behavior of the system at the slower time-scale β.
We start by introducing {θsβ(τ) : τ ∈ R+}, which interpolates {θs(t) : t ∈ Z≥0},

where it is constructed such that with s ∈ R, θs(t) = θ(t) for s ≥ β(t), and

θs(t+1) = θs(t) + b(t) · u
(
µ̂∗(θs(t);v), θs(t), X(t+1)

)
(33)

for s < β(t). Note that (33) is slightly different to (17) in that µ̂(t) is fixed to
µ̂∗(θs(t);v). Then, from (32) and the Lipschitz continuity of u(·), it follows that for
all T > 0,

lim
s→∞

sup
τ∈[s,s+T ]

‖θsβ(τ)− θβ(τ)‖ = 0. (34)
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Next, we compare θsβ(τ) to the solution trajectory of the following ODE:

θ̇(τ) = u‡(θ(τ)) :=
∑
x∈X

u

(
µ̂∗(θ(τ);v), θ(τ), φ(x)

)
pθ(τ)(x). (35)

It is clear that the process {θs(t)} is also a discrete-time stochastic process with con-
trolled Markov process in Section A for s ≤ β(t). The assumptions (C1)-(C4) are
verified similarly in Case 1. Let denote by θ̃s(τ) be the solution on [s, s+ T ] (for any
T > 0) of the ODE (35) with θ̃s(s) = θsβ(s). Then, we have that for all T > 0,

lim
s→∞

sup
τ∈[s,s+T ]

‖θβ(τ)− θ̃s(τ)‖ = 0, a.s.,

which is a direct result from Theorem 2 and (34).

Remark 4. We can shortly claim that V (θ) = −l(θ; µ̂∗(θ;v)) is a Lyapunov function
of the ODE (35), by checking the definition of Lyapunov function in [9]. Moreover,
l(θ; µ̂∗(θ;v)) = l(θ;v), which is the exact bound of the marginal log-likelihood in (6).

Then, we plug the process {θ(t) : t ∈ Z≥0} and ODE (35) into Lemma B.3, i.e.,
convergence analysis of stochastic approximation procedure with Lyapunov function,
and we have that:

θ(t) → {θ : ∂θl(θ;v) = 0}, a.s.. (36)

This completes the proof of Step 2. Combining Step 1 and Step 2, i.e., from (31) (36),
completes the proof for Case 2.

Finally, for both Case 1 and Case 2, we conclude that under APCD, θ(t) almost
surely converges to a stationary point of MMLE, i.e.,

θ(t) → {θ : ∂θl(θ;v) = 0}, a.s.,

which completes the proof of Theorem 1.
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