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Abstract—Achieving sufficient spatial capacity gain by having
small cells requires careful treatment of inter-cell interference
(ICI) management via BS power coordination coupled with user
scheduling inside cells. Optimal algorithms have been known to
be hard to implement due to high computation and signaling
overheads. We propose joint pattern-based ICI management and
user scheduling algorithms that are practically implementable.
The basic idea is to decompose the original problem into two sub-
problems, where we run ICI management at a slower time scale
than user scheduling. We empirically show that even with such a
slow tracking of system dynamics at the ICI management part,
the decomposed approach achieves high performance increase,
compared to a conventional universal reuse scheme.

I. I NTRODUCTION

To achieve high spatial capacity, wireless cellular networks
consider the dense deployment of base stations (BSs) that
cover small cells. As a consequence, inter-cell interference
(ICI) from neighboring BSs becomes a major source of per-
formance degradation and the portion of users whose capacity
is naturally limited by ICI grows. In order to fully attain
the potential gain of multi-cell networks, the coordination of
transmissions among BSs which can effectively manage ICI
is essential. The key intuition of BS coordination is that the
achievable rates, which depend on the amount of ICI, can be
increased by turning off some of neighboring BSs. Thus there
are cases when the increment of achievable rates preponderates
the sacrifice of taking away transmission opportunities at the
neighboring BSs. In particular, this usually happens to users at
cell edges severely suffering from the ICI since the increment
of achievable rates may be sufficiently large.

A brute-force approach for mitigating ICI is the use of
traditional reuse scheme in time and/or frequency domain.
However, this may waste precious radio resource since users
at different geographical locations inside cells prefer different
reuse schemes. Several schemes, e.g., fractional frequency
reuse (FFR) [1] in Mobile WiMAX, have been proposed
to accommodate users in different channel conditions with
different reuse factors. However, these priori hand-crafted
schemes are still far from optimal in the sense that they do
not adapt to dynamic network environments, e.g., time-varying
user loads/locations. In addition, opportunistic user scheduling
based on their perceived time-varying channels, needs to be
jointly considered with ICI management to achieve a high
performance gain.
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In this paper, we aim at (i) studying coupling dynamics of
inter-cell ICI management and intra-cell user scheduling,and
(ii) proposing practically implementable joint algorithms that
achieve a significant performance gain. To that end, we first
propose a pattern-based optimal algorithm that tracks time-
varying channel conditions (that runs at short time scales)at
both user scheduling and ICI management, where ‘pattern’
corresponds to a combination of BS ON/OFF activities. Then,
we show that the proposed optimal algorithm is hard to
implement due to high complexity. The key bottleneck lies
in the ICI management part that requires collecting excessive
amount of feedback information from all users and also needs
complex operations to make decisions on BS coordination at
every time slot. To overcome such complexity, we decompose
the original optimization problem into two sub-problems (user
scheduling and pattern-based ICI management), and solve
them with different time scales, whose complexity becomes
much lower than that of the optimal algorithm.

The algorithm based on time-scale decomposition stems
from a design rationale that ICI management may not have
to track fast dynamics, e.g., fast fading channel condition.
Instead, it may suffice to run the ICI management following
only macroscopic network changes, e.g., user loads/locations,
and the average channel conditions of users. In spite of such
slow tracking of system dynamics in ICI management, we
empirically show that with our decomposed algorithms, the
performance increase amounts to about 6∼20% (compared
to conventional universal reuse scheme), corresponding to
1/2∼2/3 of the optimal algorithm (that is almost impossible
to implement).

The research on mitigating ICI have recently received a lot
of attentions [2]–[8]. Optimal binary power control (BPC) for
sum rate maximization has been considered in [2]. In [3],
[4], optimal joint ICI management (similar BPC) and user
scheduling algorithms that operate slot-by-slot and require
heavy computation overheads, have been considered in slightly
different systems. The authors there presented an idea of
using clustering only neighboring BSs [3] or considering only
neighboring BSs [4] to reduce complexity. However, it still
requires centralized coordination and complex operationsper-
slot basis, which hinders practical implementation.

To make algorithms practical, there have been recent ap-
proaches [6]–[8], based on a slightly different time-scale
separation approach from ours. In [6], the authors abstract
users that share similar traffic loads and channel environments
into classes, and perform ICI management on a very long
time scale (e.g., hours) without explicit consideration ofintra-
cell user scheduling. They basically design ICI management
that tracks system dynamics at a very macroscopic level. Our



approach differs from [6] that user scheduling is explicitly
considered, and also our ICI management runs much faster
(e.g., seconds) than that in [6]. The work with a similar time-
scale separation to ours has been proposed in [7], [8] for dif-
ferent systems, i.e., OFDMA systems, where they periodically
updates the transmit power level for different subbands for
ICI management. Due to the difference in system model, we
use a different mechanism that updates patterns not powers,
leading to a different style of algorithms and analysis. We
additionally study the performance gap between the optimal
and the decomposed algorithms.

Related work also includes the examination of potential ca-
pacity gains (from the perspective of flow-level performance)
by BS coordination [9]. Another important issue in multi-
cell networks is to resolve load imbalance problem between
cells. The authors in [10], [11]explicitly balance the load by
changing user associations from the BS in hot-spot cells to
the adjacent less-crowded BS. Sang et al. [10] proposed an
integrated framework consisting of a MAC-layer cell breathing
technique and load-aware handover/cell-site selection todeal
with load balancing. Bu et al. [11] were the first to rigorously
consider a formulation of network-wide proportional fairness
(PF) [12] in a multi-cell network where associations between
users and BSs are decision variables. Although we assume
that user association is fixed, we later argue and empirically
show that ICI management is able toimplicitly resolve the
load imbalance, and the performance gain by controlling user
association may be small.

The remainder of this paper is organized as follows. In Sec-
tion II, we present our system model and problem definition.
In Section III, we propose a joint pattern selection and user
scheduling algorithm to solve this problem. Although this joint
algorithm is optimal, it has some implementation difficulties.
In order to take into account practical concerns, we design two
algorithms using time-scale decomposition that run at different
time-scales in Section IV. In Section V, we demonstrate the
performance of proposed algorithms, and conclude the paper
in Section VI.

II. SYSTEM MODEL AND PROBLEM DEFINITION

A. Network Model

We consider a wireless cellular network consisting of mul-
tiple cells. Denote byN

.
= {1, . . . , N} andK

.
= {1, . . . ,K}

a set of BSs and MSs (or users), respectively. A userk ∈ K
is associated with a single BSn ∈ N , which means that data
intended for the userk is served only by the BSn. Define
a(·) : K → N to be the association function, e.g.,a(k) = n if
the userk is associated with the BSn. We further denote by
Kn the set of users associated with the BSn. Assume that BSs
transmit data with either its given maximum power or 0, which
we simply denote by ‘ON’ or ‘OFF’ states1. We assume that
a same frequency band (or channel in short) with bandwidth
W in all cells, and consider only downlink transmissions in
the time-slotted system indexed byt = 0, 1, . . .. At each
slot, a BS can select only one user for its data transmission.

1All discussions in this paper can be readily extended to the case where
BSs can transmit data with a finite number of discrete power levels.

Channels may be time-varying, modeled by some stationary,
ergodic random process with the finite state index setI and
the stationary distributionθ = (θ(i), i ∈ I).

B. Network Resource and Allocation Schemes

The time-varying network resources at slott are represented
by a finite set R(t) of the K-dimensional feasible rate
(bits/slot) vectors over users. A resource allocation scheme
then chooses a feasible rate vector inR(t) at each slot and
serves a subset of users with the chosen rate vector. A feasible
rate vector inR(t) is determined by the following two factors:
(i) which BSs are activatedand (ii) which users are selected
in cells for data transmission.

To formally discuss (i), we definereuse pattern(or simply
pattern) p to be a combination of ON/OFF activities of BSs,
which determines inter-cell interference to the corresponding
scheduled users in cells. Denote byP the set of patterns. A
patternp is said toactivatea BSn, if the activity of the BSn
is ON under patternp. Denote byNp ⊂ N the set of all BSs
activated by the patternp. In parallel, we denote byPn ⊂ P
the set of patterns that activate the BSn. Define reuse factor
of a patternp to be χp

.
=

|Np|
N ≤ 1, i.e., the ratio of the

number of BSs which use a patternp to the total number of
BSs. Denote byXp(t) the pattern selection indicatorfor the
patternp, i.e., Xp(t) = 1 when the patternp is used at slott
and 0 otherwise. Then, since only one pattern is used per one
slot, we should have:

∑

p∈P

Xp(t) = 1. (1)

In regard to (ii), defineuser scheduling indicatorat slot t
by Ik(t), i.e., Ik(t) = 1, when the userk is scheduled in its
cell, and 0 otherwise. Reflecting the constraint that only one
user can be selected in each cell, we should have:

∑

k∈Kn

Ik(t)

{

≤ 1, if Xp(t) = 1 andn ∈ Np ,
= 0, otherwise.

(2)

Then, a resource allocation scheme incorporatespattern
selectionanduser schedulingthat can be regarded as choosing
a sequence of((Ik(t) : k ∈ K), (Xp(t) : p ∈ P))∞t=0 satisfying
the constraints (1) and (2).

We now define the transmission rates of users provided
by a resource allocation scheme, depending on the choice of
patterns. LetGn,k(t) represent the time-varying channel gain
from BS n to userk at slot t. The channel gain may take
into account path loss, log-normal shadowing, fast fading and
etc. The received SINR for userk at slot t when patternp
is selected and userk is served by its associated BS, can be
written as:

Γkp(t) =

{

Ga(k),k(t)P max
n

N0W +
∑

m∈Np,m6=a(k) Gm,k(t)P max
m

, if p ∈ Pa(k),

0, otherwise,

whereN0 is the noise spectral density. Here, the noise spectral
density is assumed to be equivalent over all users for simple
presentation. Following the Shannon’s formula, the data rate
for userk on reuse patternp at slot t is given by:

rkp(t) = W log2 (1 + Γkp(t)) .



TABLE I
SUMMARY OF NOTATIONS

N set of BSs,N = {1, . . . , N}
K set of users,K = {1, . . . , K}

a(·) association function fromK to N
Kn set of users associated with BSn
P set of patterns,P

.
= {1, . . . , P}

Pn set of patterns that can be used by BSn
Np set of BSs allowed to use the patternp
χp reuse factor (PF) of patternp

Gn,k(t) channel gain between BSn and userk at slot t
P max

n transmit power of BSn
N0 noise spectral density
W system bandwidth

Γkp(t) received SINR of userk on patternp at slot t
rkp(t) instantaneous data rate of userk on patternp at slot t

πp fraction of time for patternp
πkp fraction of time that userk is served with patternp
U system (network-wide) utility

U(n) utility of BS n
Uk(·) utility function of userk’s average throughput
R achievable rate region
R̄ vector of long-term user throughputs,R̄ = (R̄1, · · · , R̄K)

X(t) pattern selection indicator at slott
I(t) user scheduling indicator at slott

Note thatrkp(t) = 0,∀p /∈ Pa(k), i.e., userk cannot receive
any data rate if its associated BSa(k) is not activated by
the patternp. Also notice thatrkp(t) is the potential data
rate when the userk is scheduled, i.e., its actual data rate
becomes 0, when other user, sayk′, associated with the BS
a(k), is scheduled for service. We assume that each BSn
knows instantaneous achievable data rates for all its associated
users through channel feedbacks. We further assume that BSs
have infinite amount of data to be destined to users.

C. Problem Definition

In this paper, we aim at proposing the joint pattern selection
and user scheduling that maximizes the long-term network-
wide utility whenever possible, i.e., solves the following
optimization problemQ:

Q: max U =
∑

n∈N

U (n) =
∑

k∈K

Uk(R̄k)

subject to R̄ ∈ R,

where R̄ = (R̄k, k ∈ K) is the vector of long-term user
throughputs; the network-wide utilityU is just the summation
of utilities of all BSs (U (n), n ∈ N ), or of utilities of all users
(Uk, k ∈ K). Assume the standard condition of differentiability
and strictly increasing concavity ofUk. The setR ∈ R

K
+ , the

set of all achievable rate vectors over long-term, is shown to
be a closed bounded convex set. Denote byπ

(i)
p the portion

of patternp for the i-th channel state. By further denoting by
π

(i)
kp andr

(i)
kp the fraction of time that is served by userk and

the data rate of userk (if scheduled) on the patternp and for
i-th channel state, respectively, we can characterizeR by:

R =
{

R̄ = (R̄k : k ∈ K) | R̄k =
∑

i∈I

∑

p∈P

θ(i)π
(i)
kp r

(i)
kp ,

∑

k∈Kn

π
(i)
kp ≤ π(i)

p ,∀i,∀p,∀n,
∑

p∈P

π(i)
p ≤ 1,∀i

}

.

III. O PTIMAL ALGORITHM

In this section, we first study the structure of optimal
solutions analytically for simple scenarios to gain insights. and
then describe a optimal pattern selection and user scheduling
algorithm that converges to the optimal solution ofQ.

A. Structure of optimal solution for symmetric networks with
static channels

For general networks, it is quite difficult to characterize the
optimal fractions of time for user-patterns(π(i)

kp : k ∈ K, p ∈
P, i ∈ I). However, we will show that it is indeed possible
to explicitly characterize them for symmetric networks with
static channels. Here, a network is said to be symmetric
if all BSs have the same number of users whose channel
characteristics are equivalent each other. Fig. 1 depicts an
illustrative example of a linear two-cell network having three
patterns where(χ1, χ2, χ3) = (1, 0.5, 0.5). Recall thatχp, the
reuse factor of patternp, is equal to the ratio of the number
of BSs which use a patternp to the total number of BSs.
Since the network is symmetric, it is enough to analyze the
following optimization problemQ-symmetric for a reference
BS only:

Q-symmetric:

max
(πkp:k∈K,p∈P)

U (1) =
∑

k∈K1

Uk(R̄k) (3)

subject to
∑

p∈P1

∑

k∈K1

πkp

χp
≤ 1, (4)

πkp ≥ 0, ∀k ∈ K1,∀p ∈ P1, (5)

R̄k =
∑

p∈P1

πkprkp, ∀k ∈ K1. (6)

Here, we derive the constraint (4) for the above two-cell
example. However, this can be readily extended to general
symmetric networks.

1 =
∑

p∈P πp = π1 + π2 + π3

= π1 + 2π2 = π1/χ1 + π2/χ2 (∵ π2 = π3 by symmetry)
≥

∑

k∈K1

πkp

χ1

+
∑

k∈K1

πkp

χ2

=
∑

p∈P1

∑

k∈K1

πkp

χp
.

We have found that the problemQ-symmetric has an
interesting structure of optimal solution described by the
Lemmas 3.1 and 3.2. Letχprkp be theeffective rateon pattern
p for userk, which is the normalized data rate w.r.t.χp. Note
that there is a trade-off between the reuse factorχp and the
data raterkp. If the userk chooses the patternp with the
lower valueχp, then the less BSs are active in the network,
and accordingly the higher data raterkp is expected, and vice
versa. And we adopt the generalized(w,α)-fair utility function
in [13] whereUk(R̄k) is given by:

Uk(R̄k) =

{

wk log R̄k, if α = 1,
wk(1 − α)−1R̄1−α

k , otherwise,
(7)

whereα is nonnegative andwk is positive.
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Fig. 1. Example of a linear two-cell symmetric network

Lemma 3.1:For symmetric networks with static channels,
the objective (3) is maximized if and only if

πkp

{

≥ 0, if p = p∗(k),
= 0, otherwise,

where p∗(k) = arg max
p

χprkp.
2

This implies that each user, if served, only utilizes its pattern
having the largest effective rate.

Lemma 3.2:For the generalized(w,α)-fair utility function,
the optimal fractions of time for user-patterns is given by:

πkp∗(k) =
(

wkχp∗(k)r
1−α
kp∗(k)/λ0

)1/α
,

where λ0 =
(

∑

p∈P1

∑

k∈K1p
w

1/α
k χ

1−α
α

p∗(k)r
1−α

α

kp∗(k)

)α

,
(8)

whereK1p is the set of users whose most effective pattern is
p, i.e., p∗(k) = p if k ∈ K1p.

Please refer to our technical report [14] for proofs. Now,
we give a numerical example to illustrates the property of the
optimal solution.

Example 1: Consider the example of the linear two-cell sym-
metric network in the Fig. 1. In this example, we have three
patternsp ∈ P = {1, 2, 3} whereN1 = {1, 2},N2 = {1},
N3 = {2} and (χ1, χ2, χ3) = (1, 0.5, 0.5). Suppose that all
users have the same utility function with(w,α) = (1, 1). By
(8), we can obtainλ0 = |K1| and the optimal time fractions
of user-patterns is given by

πkp∗(k) =

{

|K1|
−1, if k ∈ K11,

(2|K1|)
−1

, if k ∈ K12,
(9)

where |K11| is the set of users such thatRk1 ≥ 2Rk2, i.e.,
the set of center users, and|K12| is the set of users such that
Rk1 < 2Rk2, i.e., the set of edge users. Thus, the optimal
portion for each pattern(π1, π2, π3) is given by

π1 =
∑

k∈K11

πkp∗(k) = |K11|/|K1| and

π2 = π3 =
∑

k∈K12

πkp∗(k) = |K12|/(2|K1|) .
(10)

Note that in the case of proportional fair (α = 1) the optimal
portion of each pattern depends only on and is proportional
to the number of users in the sets of center and edge users.
However, for general cases (α 6= 1), its closed form is very
complex because the optimal portion of each pattern depends
on the data raterkp∗(k) for all users due to (8). Thus, we rely
on numerical computations forα ≥ 0, α 6= 1.

2For simplicity, we ignore the case when more than two patterns achieve
the same largest value.
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Fig. 2. Numerical example of the linear two-cell symmetric network where
each BS has two users; user 1 is in the inner region of the cell and user 2
is in the edge of the cell, whose instantaneous data rate vectors are given by
(r11, r12) = (10, 11) and (r21, r22) = (3, 8).

Fig. 2 depicts the optimal portion of patterns with respect
to the fairness criterionα. We fix the number of users as
shown in the Fig. 1, that is, each BS has are two users:
one is in the center and the other in the edge of the cell,
|K1| = 2, |K11| = 1, |K12| = 1. When α = 1, the optimal
portion of patterns can be given by (10):(π1, π2, π3) =
(1/2, 1/4, 1/4). Accordingly, user throughputs can be easily
calculated:(R1, R2) = (π11r11, π22r22) = (π1r11, π2r22) =
(5, 2). When we decreaseα, the portion of pattern 1 increases
as expected. In the extreme case, throughput maximization
(α = 0), only user 1 having a better channel is always
served with pattern 1, and user 2 cannot be served at all, i.e.,
(π1, π2) = (1, 0). On the other extreme case (α → ∞), max-
min fairness is achieved such that the throughputs of user 1
and user 2 become identical.

B. Joint pattern selection and user scheduling algorithm

We now present an optimal joint pattern selection and user
scheduling algorithm. To that end, we use a standard gradient-
based algorithm, e.g., Stolyar’s gradient algorithm [15],that
selects the achievable rate vector maximizing the sum of
weighted rates where the weights are marginal utilities at each
slot. Then, it suffices to solve the following problem at each
slot, which jointly determines the pattern selectionX(t) =
(Xp(t) : p ∈ P) and user schedulingI(t) = (Ik(t) : k ∈ K):

Q-joint:

max
X(t),I(t)

∆U(t) =
∑

k∈K

U ′
k(R̄k(t − 1))rk(t) (11)

subject to
∑

p∈P

Xp(t) = 1, (12)

∑

k∈Kn

Ik(t)

{

≤ 1, if Xp(t) = 1 andn ∈ Np,
= 0, otherwise,

(13)

where rk(t) =
∑

p∈P Xp(t)Ik(t)rkp(t) is the data rate
assigned to userk at slot t and R̄k(t) = 1

t

∑t
τ=1 rk(τ)

= R̄k(t − 1) + ǫt

[

rk(t) − R̄k(t − 1)
]

(by letting ǫt = 1/t)
is the long-term throughput for userk up to slott.



Remark 3.3:If we fix the user schedulingI(t) and choose
utility function asUk(R̄k) = R̄k in Q-joint , then this problem
is reduced to binary power control (BPC) problem for sum-rate
maximization in [2].

The optimization problemQ-joint is an integer program-
ming. A naive approach is the exhaustive search of all possible
combinations of pattern selections and user schedulings. With
the help of Lemma 3.4 telling us the nice property of the
problem, we can develop the joint optimal pattern selection
and user scheduling algorithm that requires lower complexity
than the exhaustive search.

Lemma 3.4:For afixedpatternp, then the problemQ-joint
can be decomposed into the following|Np| independent intra-
cell user scheduling problems:

k∗
n(t) = arg max

k∈Kn

U ′
k(R̄k(t − 1))rkp(t), ∀n ∈ Np. (14)

Remark 3.5:A similar argument has been made in a differ-
ence setting [4], but we present this Lemma for completeness.
Please refer to our technical report [14] for a proof.

Joint pattern selection and user scheduling algorithm

p∗(t) = arg max
p∈P

∑

n∈Np

[

max
k∈Kn

U ′
k(R̄k(t − 1))rkp(t)

]

,

k∗
n(t) = arg max

k∈Kn

U ′
k(R̄k(t − 1))rkp∗(t), ∀n ∈ Np∗ .

Note that the total number of combinations for our joint
algorithm is polynomialO(P ·K) while the that of the naive
exhaustive search isO(P ·KN ). For each patternp, we select
the best user having the largest value ofU ′

k(R̄k(t− 1))rkp(t)
from (14) and then the value of the selected user is used in
the pattern selection algorithm. We then find the best pattern
p∗(t) that maximizes the sum of weighted rateU ′

k(R̄k(t −
1))rkp∗(t) of the scheduled users. The proof of convergence
to the optimal solution is a slight extension to [15], [16] that
studied only user scheduling for a fixed pattern. We skip the
proof.

This joint algorithm requires instantaneous channel feed-
back from all users in the network. We assume that at each
slot t, userk estimates its own SINR for all patternsp ∈ Pa(k)

upon listening to pilot signals, calculates the instantaneous
data raterkp(t) and then reports this information to the cental
coordinator through its associated BS.

However, this joint pattern selection and user scheduling
algorithm still has implementation difficulties. Apart from the
computational complexity of this algorithm, the central coor-
dinator running the algorithm needs to collect the following
information from each BSn ∈ N : instantaneous data rate
rkp(t) of all its associated usersk ∈ Kn on its available
patternsp ∈ Pn. The total amount of feedbacks is quite
large, i.e,(

∑

n∈N |Kn||Pn|), though they may be delivered
along with high speed wired links. Furthermore, a series of
tasks, including information feedback from BSs to the central
coordinator as well as the computation and the distribution
of central coordinator’s decision, should be performed in one
slot.

IV. T IME-SCALE DECOMPOSEDALGORITHM

A. Algorithm Description

In contrast to the centralized joint pattern selection and user
scheduling algorithm in Section III, user scheduling in prac-
tice is typically undertaken by individual BSs independently
without any coordination and information exchange with other
BSs. In this section, in order to take into account such au-
tonomous feature in user scheduling as well as overcome high
computation and feedback overheads in the optimal algorithm,
we run user scheduling at every slot, but pattern portion change
less frequently, say, everyTp >> 1 slots. We first describe
our algorithm (see Fig. 3 for a pictorial description), and then
explain the rationale behind it.

Pattern portion change algorithm

For every Tp slots, each BSn ∈ N computes the partial
derivativeD

(n)
p and sends it to the central coordinator,

D(n)
p =

∑

k∈Kn

U ′
k(R̄k)·

( π̄kp

πp
r̄kp

)

, p ∈ Pn.

Then, the central coordinator calculates the gradient vector
D = (D1,D2, · · · ,DP ) by collectingD

(n)
p from all BSs,

Dp =
∑

n∈N

D(n)
p , p ∈ P,

and updates the pattern portion vectorπ as follows,

π ← Proj∑

p∈P
πp=1, (π + γD) ,

whereProjA(·) denotes an orthogonal projection on a set A.

User scheduling algorithm

At each slott, each BSn ∈ Np(t) activated by patternp(t)
selects the userk∗

n(t), i.e., Ik∗
np(t) = 1,

k∗
n(t) = arg max

k∈Kn

U ′
k(R̄k(t − 1))rkp(t),

and updates the following variables for all usersk ∈ Kn with
some constants0 < β1, β2, β3 < 1:

R̄k(t) = (1 − β1)R̄k(t − 1) + β1Ik(t)rkp(t) ,
π̄kp(t) = (1 − β2)π̄kp(t − 1) + β2Ik(t) ,

r̄kp(t) =

{

(1 − β3)r̄kp(t − 1) + β3rkp(t), if Ik(t) = 1 ,
r̄kp(t − 1), otherwise,

Two algorithms with different time scales interact with each
other as follows: The pattern portion change algorithm adjusts
the portion of reuse patternsπ for every Tp slots, using
the variablesR̄k(t), π̄kp(t), r̄kp(t). These variables essentially
correspond to the long-term averages ofIk(t)rkp(t), πkp(t),
and rkp(t) which are progressively updated at every slot by
the user scheduling algorithm. This time-scale decomposition
and the way of interaction between two algorithms implies
that we design and operate the pattern portion algorithm to let
it tract justaverageinterference levels and channel conditions,
not fast time-varying ones like the joint optimal algorithm
in Section III. Remarking that user scheduling algorithm can
be carried out autonomously, we can significantly reduce
the actual (amortized) complexity per slot, which makes our
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Fig. 3. Proposed time-scale decomposed algorithms

algorithms much more implementable. We will discuss the
price of such complexity reduction, i.e., utility gperformance
gap with the optimal algorithm in the Subsection IV-C.

B. Rationale of Time-scale Decomposed Algorithms

The pattern portion change algorithm is a standard gradient
projection algorithm for the following problemQ-pattern:

Q-pattern:

max
π

∑

k∈K

Uk(R̄k) =
∑

k∈K

Uk

(

∑

p∈P

φkpπpr̄kp

)

subject to
∑

p∈P

πp = 1,

where φkp ∈ [0, 1] is the probability that the userk is
scheduled when patternp is selected, i.e.,φkp · πp = π̄kp

For each of the pattern portion update epoch, i.e., every
Tp slots, each BSn needs to calculate the partial derivative
D

(n)
p

.
=∂U (n)/∂πp of per-cell utility U (n) with respect to the

portion of patternp and send these information to the central
coordinator.

D(n)
p

.
=

∂U (n)

∂πp
=

∑

k∈Kn

U ′
k(R̄k) ·

∂R̄k

∂πp
, (15)

where3

∂R̄k

∂πp
= φkpr̄kp =

π̄kp

πp
r̄kp. (16)

Note that three parameters (R̄k, π̄kp and r̄kp) required to
run this pattern portion update algorithm can be attained by
attained by the user scheduling algorithm over long time.
And then the central coordinator gathers information from all
BSs and calculates the partial derivative of the network utility
Dp

.
= ∂U/∂πp by aggregating these partial derivatives of the

local utility,

Dp
.
=

∂U

∂πp
=

∑

n∈N

D(n)
p , p ∈ P, (17)

3While we differentiateR̄kp on πp, we assume thatφkp is constant.
Please refer to [8] and its technical report for rigorous proof.

and updates the portion of reuse patterns following the in-
creasing direction of network utility.

π ← Proj∑

p∈P
πp=1, (π + γD) . (18)

Based on the updated portion of patterns, the central co-
ordinator predetermines the sequence of patterns for nextTp

slots that satisfies:

(the total number of patternp) / Tp ≈ πp , ∀p ∈ P.

While there may be many strategies, a nice candidate is a ran-
dom strategy. The central coordinator sequentially determines
the sequence of patterns by rolling aP -dimensional dieTp

times with probability of the patternp beingπp.

Now we develop the user scheduling algorithm under the
fixed pattern given by the pattern portion change algorithm.
From the Lemma 3.4, for the given pattern the network-wide
user scheduling problem can be decomposed into independent
intra-cell user scheduling problems. Therefore, each BS needs
to solve the following problemQ-scheduling:

Q-scheduling:
max

(Ik(t),k∈Kn)

∑

k∈Kn

U ′
k(R̄k(t − 1))Ik(t)rkp(t)

subject to
∑

k∈Kn

Ik(t) ≤ 1.

The user scheduling algorithm solvingQ-scheduling is
straightforward. Each BSn ∈ Np allowed to use the patternp
independently chooses the best userk∗

n(t) among it associated
user setKn, i.e., Ik∗

n
(t) = 1:

k∗
n(t) = arg max

k∈Kn

U ′
k(R̄k(t − 1))rkp(t), ∀n ∈ Np, (19)

and updates the following variables for the future purpose of
the pattern portion change algorithm:

R̄k(t) = (1 − β1)R̄k(t − 1) + β1Ik(t)rkp(t) ,
π̄kp(t) = (1 − β2)π̄kp(t − 1) + β2Ik(t) ,

r̄kp(t) =

{

(1 − β3)r̄kp(t − 1) + β3rkp(t), if Ik(t) = 1 ,
r̄kp(t − 1), otherwise,

whereβ1, β2, β3 > 0 are small averaging parameters;R̄k(t),
π̄kp(t) and r̄kp(t) are the average throughput of userk, the
average fraction of time that userk is served with patternp,
and the average instantaneous data rate when the userk is
served with patternp, respectively.

Remark 4.1:There are two key differences between the
algorithm in [8] and ours. First, they additionally introduce
a virtual schedulerto obtain the fraction of time that the
scheduler chooses useri for transmission in sub-bandj (their
notation:φij). In our algorithm, however, we just obtain the
fraction of time that userk is served with patternp (our
notation: π̄kp) using theactual schedulerwithout any extra
algorithm. Second, they do not reflect time-varying nature of
the data rate available to useri in sub-bandj (their notation:
Rij) by assuming this rate does not change with time. In
our algorithm, the long-term average of data rate of userk
on patternp (our notation: r̄kp) is not just the average of
instantaneous data rata. We take the average of instantaneous
data rata only if the userk is really served by the scheduler.



TABLE II
COMPARISON BETWEEN JOINT OPTIMAL ALGORITHM(JOA) AND TIME -SCALE DECOMPOSED ALGORITHM(TDA)

Joint optimal algorithm Time-scale decomposed algorithm

Time-scale of algorithms every slot
every slot (user scheduling)

everyTp slot (pattern portion change)
Amount of feedbacks to each BSn at each slot |Kn||Pn| |Kn|
Amount of feedbacks to the central coordinator

∑

n∈N |Kn||Pn|
∑

n∈N |Pn|
Period of feedback to the central coordinator 1 Tp

Convergence speed fast reasonable speed (depending onTp)

Recall that the opportunistic scheduler likely to serve theuser
whose current channel quality is high relative to his own
rate statistics. In other words, ourr̄kp reflects the multi-user
diversity gain from exploiting the channel fluctuation.

C. Complexity Reduction and Its Price

Our time-scale decomposed algorithm still involves signal-
ings from BSs to the central coordinator. However, we can
significantly reduce feedback overheads because the period-
icity of the feedback is stretched from every slot to every
Tp slots. Moreover, the amount of feedbacks is reduced from
(
∑

n∈N |Kn||Pn|
)

to
(
∑

n∈N |Pn|
)

, i.e., requires only the
BS-level feedback, not the user-level channel feedback. The
amount of feedbacks to each BSn from its associated users at
each slot is also reduced from|Kn||Pn| and|Kn| because users
need to send channel information only for the predetermined
pattern. Table II compares the joint pattern selection and user
scheduling algorithm with the proposed algorithms based on
time-scale decomposition.

This complexity reduction for implementability comes at
the cost of performance gap with the joint optimal algorithm.
This is because the ICI management part in the decomposed
algorithm cannot fully exploit instantaneousinter-cell channel
variations, and onlyintra-cell channel variations are oppor-
tunistically utilized. Note that in the joint optimal algorithm,
both pattern selection and user scheduling fully exploit both
inter-cell and intra-cell time-varying channel conditions at a
fast time scale.

As an example, consider a two cell network where two users
are located at the edge of each cell. Their achievable rates are
limited by severe ICI. The decomposed algorithm will find the
following TDMA-like solution: BS 1 and BS 2 are exclusively
active in order to mitigate the ICI, i.e., the portion for the
pattern in which both BSs are active is nearly zero. However,
suppose that both (time-varying) inter-cell channel gainsfrom
BS 1 (or 2) to the user in BS 2 (or 1) are in deep fading at
some time slot. You can imagine this case as if there were a
big wall between two cells. Then the user in cell 1 (or 2) is not
interfered by the BS transmission in cell 2 (or 1). Therefore,
serving two users simultaneously is transiently optimal inthis
inter-cell deep fading case, whereas the pattern that only one
BS is active is the solution of the average ICI mitigation. Joint
optimal algorithm can find this optimal solution by tracking
this fast fading while the decomposed algorithm cannot. We
finally comment that as we will see in the Section V, in absence
of fast fading, the performance gap becomes negligible.

P1 = {1, 2} P2 = {1, 3}

BS1 BS2Pattern 1: (BS1, BS2) = (ON,ON)

Pattern 2: (BS1, BS2) = (ON,OFF)

Pattern 3: (BS1, BS2) = (OFF,ON)

(a) Linear two-cell network
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(b) Two-tier multi-cell network composed of 19 cells

Fig. 4. Network configurations.

V. SIMULATION RESULTS

A. Simulation Setup

We consider two cases of network configuration: one is the
linear two-cell network and the other is the two-tier multi-
cell network composed of 19 cells. In both cases, the distance
between BSs is 2km. In the linear two-cell network, there are
three patternsP = {1, 2, 3}. Under pattern 1, both BSs are
ON, and under pattern 2 (resp. 3), only BS 1 (resp. 2) is ON.
In the two-tier multi-cell network, we consider 11 patterns.
Under pattern 1, all BSs are ON so that each BS receives all the
ICI from all over the network. However, under well-designed
patterns 2∼4 or 5∼11 (see Fig. 4 for the pattern design), the
BS using these patterns can expect the first-tier ICI mitigation
or the mitigation of ICI from one of its neighbors, respectively.

To evaluate the performance under various user distribution
scenarios, we introduce a variable, so-called, ‘user distribution
offset’ ρ ∈ [0, 1], which adjusts the minimum distance between
the BS and the user toρ×(cell radius). Basically, we randomly



distributed users in each cell with this minimum distance
restriction. For example, ifρ = 0, users are uniformly
generated over the cell. On the other hand, ifρ goes to 1,
users are only located in the edge of the cell.

The maximum powers of BSs are all the same with 20W.
Channel models are implemented following ITU PED-B path
loss model [17] and Jakes’ Rayleigh fading model. The
channel bandwidth is 10MHz, and the time-slot length is 5ms,
as specified in the IEEE 802.16e standard. The pattern update
periodTp = 500, and the step size is chosen to be a typically
small value, i.e.,β1 = β2 = β3 = γ = 0.001. For each given
parameter set, we ran simulations over 50000 slots.

We consider the performance of the (i)conventional uni-
versal reuse scheme(UNI), in which all BSs in the network
are always active without any ICI management, as a baseline
and compare the performance of the following two algorithms
normalized by UNIVERSAL: (i)the joint optimal algorithm
(JOA) and (ii) the algorithm based on time-scale decomposi-
tion (TDA). As performance metrics, the geometric average of
user throughputs (GAT) and the average of edge user through-
puts (AET) are used. We use GAT since maximizing this is
equivalent to the system objective (sum of log throughputs).
The AET is the measure of cell edge performance defined as
the average throughput of users located at cell edges. In our
simulation, we treat ‘edge users’ as those who are more than
800m away from their associated BSs in our setup.

B. Linear two-cell network case

Fig. 5 shows the GAT and AET performances of three
algorithms in the linear two-cell network. In the case without
fading, the performances of both JOA and TDA are almost
same, where they increase the GAT and the AET by 20∼85%
(depending on user distribution) and 85% compared to UNI.
We observe a higher performance gain when user distribution
offset is larger (i.e., more users are located at cell edges).
This is because the ICI management is mainly targeted for
the performance improvement of edge users. With fading,
however, as discussed in subsection IV-C, there is a perfor-
mance gap between JOA and TDA due to loss in opportunism
of time-scale decomposition. Still, the TDA outperforms the
UNI in terms of both the GAT (6∼20% depending on user
distribution) and AET (33%). Note that TDA can attain more
than 1/2 (atρ = 0) and up to 2/3 (atρ = 0.9) of the GAT
performance gain that is achieved by JOA.

C. Two-tier 19-cell network case

In Fig. 6 shows the GAT and AET performances in the
two-tier multi-cell network composed of 19 cells. Althoughthe
performance gain is a little small compared to the simple linear
two-cell network case, trends are similar to those in Fig. 5 as
a whole. With fading, the TDA outperforms the UNI in terms
of both the GAT (5∼25% depending on user distribution) and
AET (25%). Similar to the two-cell case, TDA can still attain
1/2∼2/3 of GAT performance gain that is achieved by JOA.
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Fig. 5. Throughput performances of three algorithms in two-cell network:
joint optimal algorithm (JOA), time-scale decomposed algorithm (TDA) and
universal reuse (UNI).

D. Imbalance load: BS coordination vs. association change

We also test the performance in the linear two-cell network
having imbalanced loads. We located2 users 900m away from
BS 1 and2 × LI users 900m away from BS 2, respectively,
whereLI quantifies the load imbalance. In the network with
imbalanced load, we have performed simulation to investigate
the amount of additional gain that BS association change can
provide. We compare the following two different approaches:
(i) Association change: load-aware handover in [10]and (ii)
BS coordination: our TDA. As a baseline, we also plot the
performance of UNI.

Originally users are associated with the closest BS offering
the best signal strength. In the case of association change
algorithm, however, if the expected throughput measure in [10]
from the other BS is greater than that from the current BS,
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Fig. 6. Throughput performances of three algorithms in 19-cell network:
joint optimal algorithm (JOA), time-scale decomposed algorithm (TDA) and
universal reuse (UNI).

then the user changes its association. When theLI is small,
users do not change their associations. When we increaseLI
more than 6, the association change from the hot-spot cell (BS
2) and the under-loaded cell (BS1) happens (moving one, two
and three users atLI=6, 8 and 10, respectively) by the load-
aware handover in [10]. As can be seen in Fig. 7, however,
the gain from the association change is marginal.

On the other hand, using the BS coordination, we can
implicitly resolve the load imbalance by preventing the hot-
spot cell (BS 2) from being turned off, i.e., provide more
transmission chances compare to the BS 1. In brief, the BS
coordination originally developed for ICI mitigation can also
resolve the load imbalance, and the improvement of than BS
coordination is better than that of the association change.
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Fig. 7. Association change vs. BS coordination under imbalanced load
scenario.

VI. CONCLUSION

In this paper, we have focused on the problem of joint ICI
management and user scheduling in multi-cell networks. We
have shown that the joint optimal algorithm is too complex (in
terms of computational and signaling overhead) to be imple-
mented in practical systems. To overcome this complexity and
make the algorithm practical, we have decomposed the original
optimization problem into two sub-problems, where we run
ICI management at a slower time scale than user scheduling.
This time-scale decomposition stems from a design rationale
that ICI management may not have to track fast changing
dynamics, and it may suffice to attain much gain just by
running it based only on macroscopic network changes. We
empirically show that even with such a slow tracking of system
dynamics at the ICI management, our algorithm achieves high
performance gain compared to a conventional universal reuse
scheme, as well as is practically implementable compared to
the very complex optimal algorithm.

REFERENCES

[1] WiMAX Forum, “Mobile WiMAX - Part I: A technical overview and
performance evaluation,” Aug. 2006.

[2] A. Gjendemsj, D. Gesbert, G. E. Oien, and S. G. Kiani, “Binary power
control for sum rate maximization over multiple interfering links,” IEEE
Trans. Wireless Commun., vol. 7, no. 8, pp. 3164–3173, 2008.

[3] S. Das, H. Viswanathan, and G. Rittenhouse, “Dynamic loadbalancing
through coordinated scheduling in packet data systems,” inProc. IEEE
INFOCOM, San Francisco, CA, Mar. 2003.

[4] J. Cho, J. Mo, and S. Chong, “Joint network-wide opportunistic schedul-
ing and power control in multi-cell networks,” inProc. IEEE WoWMoM,
San Francisco, CA, Jun. 2007.

[5] K. Son, S. Chong, and G. de Veciana, “Dynamic association for load
balancing and interference avoidance in multi-cell networks,” in Proc.
WiOpt, Limassol, Cyprus, Apr. 2007.

[6] B. Rengarajan and G. de Veciana, “Network architecture and abstractions
for environment and traffic aware system-level coordination of wireless
networks: The downlink case,” inProc. IEEE INFOCOM, Phoeniz, AZ,
Apr. 2008.

[7] A. L. Stolyar and H. Viswanathan, “Self-organizing dynamic fractional
frequency reuse in ofdma system,” inProc. IEEE INFOCOM, Phoeniz,
AZ, Apr. 2008.



[8] ——, “Self-organizing dynamic fractional frequency reuse for best-effort
traffic through distributed inter-cell coordination,” to appear in Proc.
IEEE INFOCOM, 2009.

[9] T. Bonald, S. Borst, and A. Proutière, “Inter-cell scheduling in wireless
data networks,” inProc. European Wireless, Cyprus, Greece, Apr. 2005.

[10] A. Sang, X. Wang, M. Madihian, and R. D. Gitlin, “Coordinated load
balancing, handoff/cell-site selection, and scheduling in multi-cell packet
data systems,” inProc. ACM MobiCom, Philadelphia, PA, Sep. 2004,
pp. 302–314.

[11] T. Bu, L. Li, and R. Ramjee, “Generalized proportional fair scheduling
in third generation wireless data networks,” inProc. IEEE INFOCOM,
Barcelona, Spain, Apr. 2006.

[12] F. Kelly, A. Maullo, and D. Tan, “Rate control in communication
networks: shadow prices, proportional fairness and stability,” Journal
of the Operational Research Society, vol. 49, pp. 237–252, Jul. 1998.

[13] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Trans. Networking, vol. 8, no. 5, pp. 556–567, Oct.
2000.

[14] K. Son, Y. Yi, and S. Chong, “Adaptive multi-pattern reuse in multi-cell
networks,” Available at http://netsys.kaist.ac.kr/∼skio/multipattern.pdf,
Technical Report, May 2009.

[15] A. L. Stolyar, “On the asymptotic optimality of the gradient scheduling
algorithm for multiuser throughput allocation,”Operations Research,
vol. 53, no. 1, pp. 12–25, Jan. 2005.

[16] H. J. Kushner and P. A. Whiting, “Convergence of proportional-fair
sharing algorithms under general conditions,”IEEE Trans. Wireless
Commun., vol. 3, no. 4, pp. 1250–1259, 2004.

[17] ITU, “Recommendation ITU-R M.1225: Guidelines for evaluation of
radio transmission technologies for IMT-2000,” 1997.


