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Abstract—Achieving sufficient spatial capacity gain by having In this paper, we aim at (i) studying coupling dynamics of
small cells requires careful treatment of inter-cell interference inter-cell ICI management and intra-cell user schedulary
(ICl) management via BS power coordination coupled with user (ii) proposing practically implementable joint algoritsnthat

scheduling inside cells. Optimal algorithms have been known to ) e . .
be hard to implement due to high computation and signaling achieve a significant performance gain. To that end, we first

overheads. We propose joint pattern-based ICI management ah Propose a pattern-based optimal algorithm that tracks-time
user scheduling algorithms that are practically implementable. varying channel conditions (that runs at short time scad¢s)

The basic idea is to decompose the original problem into two sub- poth user scheduling and ICI management, where ‘pattern’
problems, where we run ICI management at a slower time scale ,resnonds to a combination of BS ON/OFF activities. Then,

than user scheduling. We empirically show that even with such a h that th d timal algorithm is hard t
slow tracking of system dynamics at the IClI management part, we show tha € proposed optimal algorithm 1S hara 1o

the decomposed approach achieves high performance increaseimplement due to high complexity. The key bottleneck lies
compared to a conventional universal reuse scheme. in the ICI management part that requires collecting exuessi

amount of feedback information from all users and also needs
complex operations to make decisions on BS coordination at
) ) ] i ] every time slot. To overcome such complexity, we decompose

To_achleve high spatial capacity, wireless ce_llular neksor e original optimization problem into two sub-problemséu
consider the dense deployment of base stations (BSs) t@teduling and pattern-based ICI management), and solve
cover small cells. As a consequence, inter-cell interi@eny ey with different time scales, whose complexity becomes
(ICI) from ne|ghb0(|ng BSs becom.es a major source of P&fiuch lower than that of the optimal algorithm.
formance degrgdatlon and the portion of users whose cgPacitThe algorithm based on time-scale decomposition stems
is naturally limited by ICI grows. In order to fully aftain oy a design rationale that ICI management may not have
the potential gain of multi-cell networks, the coordinatiof 5 rack fast dynamics, e.g., fast fading channel condition
transmissions among BSs which can effectively manage Ifgktead, it may suffice to run the ICI management following
is essential. The key intuition of BS coordination is that thonly macroscopic network changes, e.g., user loads/totsti
achievable rates, which depend on the amount of ICI, can By the average channel conditions of users. In spite of such
increased by turning off some of nelghbormg BSs. Thus thegg, tracking of system dynamics in ICI management, we
are cases when the increment of achievable rates prepoeslergmpirically show that with our decomposed algorithms, the
the sacrifice of taking away transmission opportunitieshat tperformance increase amounts to about26% (compared
neighboring BSs. In particular, this usually happens tasi188 5 conventional universal reuse scheme), corresponding to
cell edges severely suffering from the ICI since the incremey;>._2/3 of the optimal algorithm (that is almost impossible
of achievable rates may be sufficiently large. to implement).

A brute-force approach for mitigating ICI is the use of Thg research on mitigating ICI have recently received a lot
traditional reuse scheme in time and/or frequency domaiy sttentions [2]-[8]. Optimal binary power control (BPGyrf
However, this may waste precious radio resource since USgl$, rate maximization has been considered in [2]. In [3]
at different geographical locations inside cells p_reféiedéant [4], optimal joint ICI management (similar BPC) and user
reuse schemes. Several schemes, e.g., fractional frequelithequling algorithms that operate slot-by-slot and mequi
reuse (FFR) [1] in Mobile WIMAX, have been propose¢,qayy computation overheads, have been considered itlgligh
to accommodate users in different channel conditions Wifferent systems. The authors there presented an idea of
different reuse 'factors. Howeyer, Fhese priori hand-echft using clustering only neighboring BSs [3] or considerindyon
schemes are still far from optimal in the sense that they d@ighboring BSs [4] to reduce complexity. However, it still
not adapt to dynamic network environments, e.g., imem@ry requires centralized coordination and complex operatjmrs
user Ioads/loc.atlons. I.n add.|t|on, opportumstlc useeseling gt basis, which hinders practical implementation.
based on their perceived time-varying channels, needs to b&, make algorithms practical, there have been recent ap-
jointly con&dergd with ICI management to achieve a h'gﬁ‘roaches [6]-[8], based on a slightly different time-scale
performance gain. separation approach from ours. In [6], the authors abstract

This research was partly supported in part by the Ministrituswiedge  USErS that share similar traffic loads and channel enviraisne
Economy, Korea, under the ITRC (Information Technology Rese€enter) into classes, and perform ICI management on a very long

support program supervised by the IITA (Institute of Infotima Technology  time scale (e.g., hours) without explicit considerationirfa-
Advancement) (IITA-2009-C1090-0902-0037). This work wdsoapartly I heduli Th basicallv desi ICI
supported by the IT R&D program of MKE/IITA [2009-F-045-01tta Small  C€ll USEr scheduling. They basically design management

Cell Based Autonomic Wireless Network]. that tracks system dynamics at a very macroscopic level. Our
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approach differs from [6] that user scheduling is explicititChannels may be time-varying, modeled by some stationary,
considered, and also our ICI management runs much fastegodic random process with the finite state indexZeind
(e.g., seconds) than that in [6]. The work with a similar timethe stationary distributio® = (89, i € 7).

scale separation to ours has been proposed in [7], [8] fer dif

ferent systems, i.e., OFDMA systems, where they periolgicaB. Network Resource and Allocation Schemes

updates the transmit power level for different subbands forype time-varying network resources at slatre represented

ICI management. Due to the difference in system model, Wg 5 finite setR(t) of the K-dimensional feasible rate
use a different mechanism that updates patterns not powWefs/siot) vectors over users. A resource allocation sehe

leading to a different style of algorithms and analysis. Wen chooses a feasible rate vectorRit) at each slot and
additionally study the performance gap between the optimglyyes a subset of users with the chosen rate vector. A feasib
and the decomposed algorithms. rate vector inR(t) is determined by the following two factors:

Related work also includes the examination of potential @) which BSs are activatednd (i) which users are selected
pacity gains (from the perspective of flow-level perform@nc i, cells for data transmission
by BS coordination [9]. Another important issue in multi- T, formally discuss (i), we defineeuse pattern(or simply
cell networks is to resolve load imbalance problem betwe%%tterr) p to be a combination of ON/OFF activities of BSs,
cells. The authors in [10], [11¢xplicitly balance the load by \yhich determines inter-cell interference to the corresiim
changing user associations from the BS in hot-spot cells dgheduled users in cells. Denote Bythe set of patterns. A
the adjacent less-crowded BS. Sang et al. [10] proposed @tern;, is said toactivatea BSn, if the activity of the BSn
integrated framework consisting of a MAC-layer cell bréath is oN under patterp. Denote by, c A the set of all BSs
technique and load-aware handover/cell-site selectiotetd 4ctivated by the patterp. In parallel, we denote b, c P

with !gad bafllancirrg.. Bu it al. [11LW?56 the first to ”lgforQUSHhe set of patterns that activate the BSDefinereuse factor
consider a formulation of network-wide pr = W - i

_ _ proportional f&ss o 5 patternp to be y, = ‘—N| < 1, i.e., the ratio of the
(PF) [12] in a multi-cell r?e_twork vyhere associations betwee, ,mber of BSs which use a patteprto the total number of
users and BSs are decision variables. Although we assugs penote byx, () the pattern selection indicatofor the
that user association is fixed, we later argue and empmcaHattemp’ i.e., X,(t) = 1 when the patterp is used at slot

show that ICI management is able implicitly resolve the 5nq o gtherwise. Then, since only one pattern is used per one
load imbalance, and the performance gain by controlling us§qt \we should have:

association may be small.
The remainder of this paper is organized as follows. In Sec- > X(t) =1 1)

tion Il, we present our system model and problem definition. peP

In Section lll, we propose a joint pattern selection and userin regard to (ii), defineuser scheduling indicatoat slot¢

scheduling algorithm to solve this problem. Although thi&f by I;(¢), i.e., Ix(t) = 1, when the usek is scheduled in its

algorithm is optimal, it has some implementation difficedti cell, and 0 otherwise. Reflecting the constraint that onlg on

In order to take into account practical concerns, we design t user can be selected in each cell, we should have:

algorithms using time-scale decomposition that run aeckfit .

time-scales in Section IV. In Section V, we demonstrate the (1) { = 1, if Xp(t) =1 andn e N,

performance of proposed algorithms, and conclude the paper rex,, =0, otherwise

)

in Section VI. Then, a resource allocation scheme incorporatattern
selectionanduser schedulinghat can be regarded as choosing
Il. SYSTEM MODEL AND PROBLEM DEFINITION a sequence df( I (t) : k € K), (X,(t) : p € P))2,, satisfying
A. Network Model the constraints (1) and (2).

We consider a wireless cellular network consisting of mul- We now define the transmission rates of users provided
tiple cells. Denote by\ = {1,..., N} andK = {1,...,K by a resource allocation scheme, (_jependln_g on the chomg of
a set of BSs and MSs (or users), respectively. A user K patterns. LetG,, 1 (¢) represent the time-varying _channel gain
is associated with a single BS< A, which means that data oM BS n to userk at slott. The channel gain may take
intended for the usek is served only by the BS. Define into account path loss, log-normal shadowing, fast fadimd) a
a(-) : K — N to be the association function, e.g(k) = n if etc. The received SINR for usdr at slot ¢ vyhen patternp
the userk is associated with the BS. We further denote by IS Selected and usdr is served by its associated BS, can be
iC,, the set of users associated with the BRAssume that BSs Written as:
transmit data with either its given maximum power or 0, which { ORI

, ifpePyn,
we simply denote by ‘ON’ or ‘OFF’ statésWe assume that Lip(t) = 4 NoW + X e, mza(n) Gmok (PR ®

a same frequency band (or channel in short) with bandwidth 0, otherwisg

W in all cells, and consider only downlink transmissions iwhereN, is the noise spectral density. Here, the noise spectral
the time-slotted system indexed bBy= 0,1,.... At each density is assumed to be equivalent over all users for simple
slot, a BS can select only one user for its data transmissigiesentation. Following the Shannon’s formula, the data ra

for userk on reuse patterp at slott is given by:
1All discussions in this paper can be readily extended to #s® avhere
BSs can transmit data with a finite number of discrete powerdeve Tip(t) = Wlogy (14 Tip(t)) .



TABLE |

SUMMARY OF NOTATIONS I1l. OPTIMAL ALGORITHM
j/\cf zg g; Essesré\l/c:—{{lf s ]X(}} In this section, we first study the structure of optimal
a() | association function fronk to A" solutions analytically for simple scenarios to gain insigland
Kn set of users associated with BS then describe a optimal pattern selection and user scimgduli
P set of patternsp = {1,..., P} algorithm that converges to the optimal solution@f
Pn set of patterns that can be used by BS
Np set of BSs allowed to use the pattegrn
Xp reuse factor (PF) of patterm
Gn,k(t) | channel gain between B& and userk at slot¢ A. Structure of optimal solution for symmetric networkshwit
pprax transmit power of BSy

Ny noise spectral density static channels

w system bandwidth

Tyop(t) | received SINR of usek on patternp at slot For general networks, it is quite difficult to characteribe t

rip(t) | instantaneous data rate of ugeon patternp at slot¢ optimal fractions of time for user-patterrﬂﬁ,(cg ke k,pe

™ Iracz!c’” OI :!me Iﬁr tpatter;@ 4 with oatt P,i € T). However, we will show that it is indeed possible
Tkp raction of ume that usek Is servea witn patterp . . . . .

7 System (network-wide) utiity to e_pr|C|tIy characterize them for s_ymm(_atnc networks hwit _
U utility of BS n static channels. Here, a network is said to be symmetric
Ug(-) | utility function of userk’s average throughput if all BSs have the same number of users whose channel

R achievable rate region ot ; ; ;

R vector of long-term user throughpu,  (R1, -~ . Rx) .charact'erlstlcs are equwglent each other. Fig. 1 erlnts a
X(t) | pattern selection indicator at slot illustrative example of a linear two-cell network havingeh
1(t) user scheduling indicator at slot patterns wheréx1, x2, x3) = (1,0.5,0.5). Recall thaty,, the

reuse factor of patterp, is equal to the ratio of the number
of BSs which use a patterp to the total number of BSs.
Since the network is symmetric, it is enough to analyze the
following optimization problenQ-symmetric for a reference
BS only:

Note thatry,(t) = 0,VYp ¢ Py, i.€., userk cannot receive
any data rate if its associated B&k) is not activated by
the patternp. Also notice thatry,(t) is the potential data _
rate when the uselk is scheduled, i.e., its actual data rateQ-Symmetric:
becomes 0, when other user, &y associated with the BS

a(k), is scheduled for service. We assume that eachrBS X U =3 Un(Rr) @)
knows instantaneous achievable data rates for all its ededc keka
users through channel feedbacks. We further assume that BSs subject to Z Z Thp <1, 4)
have infinite amount of data to be destined to users. pEPy keky XP
7rkp20, Vk € ICq,Vp € Py, (5)
C. Problem Definition Ry = Z TrpThp, Yk € K1. (6)
In this paper, we aim at proposing the joint pattern selectio PEPL

and user scheduling that maximizes the long-term netwo
wide utility whenever possible, i.e., solves the followin
optimization problenQ:

Q: max U= Z U = z Ui (Ry)

neN keK ]-_ Zpe’])ﬂ—pzﬂ—l"_ﬂ—Q"_ﬂ—fi
Subject to R c R7 ™ + 27T2 = 7Tl/Xl + 7T2/X2 ( T = T3 by Symmetry

Tkp Tkp __ Tkp
where R = (Ry,k € K) is the vector of long-term user ey S+ ke S = Lopers ke
throughputs; the network-wide utility/ is just the summation  We have found that the probler®-symmetric has an
of utilities of all BSs (/(™),n € \), or of utilities of all users interesting structure of optimal solution described by the
(U, k € K). Assume the standard condition of differentiability emmas 3.1 and 3.2. Lat,rx, be theeffective rateon pattern
and strictly increasing concavity @f;. The setR € R, the  for userk, which is the normalized data rate w.nt,. Note
set of all achievable rate vectors over long-term, is shawn that there is a trade-off between the reuse fagtprand the
be a closed bounded convex set. Denotewf;?/ the portion data ratery,. If the userk chooses the patterp with the
of patternp for the i-th channel state. By further denoting bylower value,, then the less BSs are active in the network,
wl(j and T,(;; the fraction of time that is served by userand and accordingly the higher data ratg, is expected, and vice

rk- . .

Ihere, we derive the constraint (4) for the above two-cell
gexample. However, this can be readily extended to general
symmetric networks.

vVl

P
the data rate of user (if scheduled) on the pattepnand for versa. And we adopt the generalized «)-fair utility function
i-th channel state, respectively, we can characteRizey: in [13] whereUy(Ry,) is given by:
R= {R=(Ri:kek)| Re=33 00mr) o py_  welog R, fa=1
el peP k(fk) = wi(1—a) 'Ry, otherwise ()

Z 71',52 < ﬂl(,i),Vi,Vp,Vn, Z Wl(f) <1,Vi } _ . . N
k€K, pEP where« is nonnegative and is positive.
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Fig. 1. Example of a linear two-cell symmetric network

The portion of pattern 2 and 3: I,
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Lemma 3.1:For symmetric networks with static channels,
the objective (3) is maximized if and only if

>0, if p=p*(k),
mp{— p=p*(k)

o

i i i i i i i i i
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
The portion of pattern 1: LY

o

2 Fig. 2. Numerical example of the linear two-cell symmetric netwwahere
each BS has two users; user 1 is in the inner region of the odlluser 2
is in the edge of the cell, whose instantaneous data ratergeate given by

This implies that each user, if served, only utilizes itstgrat  ("11,712) = (10,11) and (r21, 722) = (3, 8).
having the largest effective rate.

Lemma 3.2:For the generalize@w, «)-fair utility function,
the optimal fractions of time for user-patterns is given by:

— 0. otherwise where p*(k) = arg MAX XpTkp-

Fig. 2 depicts the optimal portion of patterns with respect
to the fairness criterionv. We fix the number of users as
Thp (k) = (kap*(k)Ti;*OEk)//\O)l/aa show_n _in the Fig. 1, that is, each _BS has are two users:
h N — 1ja ize 1=a \a (8) one is in the center and the other in the edge of the cell,
WRETE Ao = (Zpe7% 2kekr, Wi X k)rkp*(k)) ’ IKi| = 2,|K11| = 1,|K12| = 1. Whena = 1, the optimal
whereky,, is the set of users whose most effective pattern ROrtion of patterns can be given by (1001, mo, m3) =
pie.p (k) =pif ke Kip. (1/2,1/4,1/4). Accordingly, user throughputs can be easily
Please refer to our technical report [14] for proofs. Novgalculated: (R, Ra) = (w1711, m22122) = (m1711, Tar22) =
we give a numerical example to illustrates the property ef tr(5’ 2). When we decrease, the portion of pattern 1 Increases
optimal solution as expected. In the extreme case, throughput maximization

Example 1Consider the example of the linear two-cell sym(® = 0). only user 1 having a better channel is always
metric network in the Fig. 1. In this example, we have thre%erved with pattern 1, and user 2 cannot be served at all, i.e.
patternsp € P = {1,2,3} where N} = {1,2}, Ny = {1}, 71,72) = (1,0). On the other extreme case ¢ oc), max-

Ns = {2} and (x1 X; ;<3) = (1,0.5,0.5) 7Sup,pose that gl Min fairness is achieved such that the throughputs of user 1
users have the same utility function witw, a) = (1,1). By and user 2 become identical.
(8), we can obtain\, = |K;| and the optimal time fractions

of user-patterns is given by B. Joint pattern selection and user scheduling algorithm
Iy~ it ke Ky We now present an optimal joint pattern selection and user
Thp= (k) = { e |)’,1 i ke ko ’ (9) scheduling algorithm. To that end, we use a standard gradien

e 12 based algorithm, e.g., Stolyar's gradient algorithm [16ht

where |K1;| is the set of users such th&,, > 2Ry, i.e., Selects the achievable rate vector maximizing the sum of

the set of center users, afid| is the set of users such thatveighted rates where the weights are marginal utilitiesaahe
Ri1 < 2Rys, ie., the set of edge users. Thus, the optim&lot- Then, it suffices to solve the following problem at each

portion for each patteriir,, 2, 73) is given by slot, which jointly determines the pattern selecti{/) =
Z (X,(t) : p € P) and user schedulin§(t) = (I (¢) : k € K):
T = Thp= (k) = [K11]/|K1|  and _—
ol (10) Q-joint:
Mo =g = Y Thpe(r) = (Kol /21K ]) - max  AU(t) = > UL(Ri(t — 1)ri(t) (11)
keki2 X®.1) ke
Note that in the case of proportional faix & 1) the optimal subject to Z X,(t) =1, (12)
portion of each pattern depends only on and is proportional peP
to the number of users in the sets of center and edge users. :
< =
However, for general cases (* 1), its closed form is very Z I(t)s — L, if Xp(t.) L andn € Ny, (13)
. . =0, otherwise
complex because the optimal portion of each pattern depends k€K,
on the da‘Fa rlatekp*(k% fth aIIfuse>rsOdue to1 (8). Thus, we relywhere re(t) = Zperp(t)Ik(t)Tkp(t) is the data rate
on numerical computations far = 0, a 7 1. assigned to usek at slott and Ry(t) = %23:1 7(T)

2For simplicity, we ignore the case when more than two pattechiese : Rk(t - 1) t e [Tk(t) - Rk(t - 1)} (by letting ¢, = 1/t)
the same largest value. is the long-term throughput for usérup to slott.



Remark 3.3:If we fix the user scheduling(z) and choose IV. TIME-SCALE DECOMPOSEDALGORITHM
utility function asUy(Ry) = Ry, in Q-joint, then this problem A Algorithm Description

is reduced to binary power control (BPC) problem for sune-rat In contrast to the centralized joint pattern selection aseru

maximization in [2]. scheduling algorithm in Section 1ll, user scheduling ingara

The optimization problenQ-joint is an integer program-
ming. A naive approach is the exhaustive search of all ptessﬂglce is typically undertaken by individual BSs independient

combinations of pattern selections and user schedulings. V\)NIthOUt any coordination and information exchange witheoth

. . BSs. In this section, in order to take into account such au-

the help of Lemma 3.4 telling us the nice property of th
onomous feature in user scheduling as well as overcome high

problem, we can develop the joint optimal pattern selection

computatlon and feedback overheads in the optimal algorith
and user scheduling algorithm that requires lower commem
we run user scheduling at every slot, but pattern portiomgea
than the exhaustive search.

) . - less frequently, say, every, >> 1 slots. We first describe
hetr)‘n n;a 3';":(” a;')i(ridriﬁttirr;f ’Vb?en thiﬁ dprOblneann'tJ?g:: our algorithm (see Fig. 3 for a pictorial description), ahdrt
can be decompose o the c_) owipl,| independe a explain the rationale behind it.
cell user scheduling problems:

_ Pattern portion change algorithm
k:(t) = arg max Uy (Ri(t — 1))rip(t), VneN,. (14) & ge &g
kekn For everyT, slots, each BSn € N' computes the partial

Remark 3.5:A similar argument has been made in a differde”Vat'VeD%) " and sends it to the central coordinator,

ence setting [4], but we present this Lemma for completeness D(” UL (Re) P
Please refer to our technical report [14] for a proof. 1;1; k() (_T"”) v PEFn
ckn
Joint pattern selection and user scheduling algorithm Then, the central coordinator calculates the gradientovect

D = (D, Ds,---,Dp) by coIIectingD,(,”) from all BSs,
p*(t) = argmax { max Uy (R (t — 1))7“@(75)} , .
pEP nGNp kekn Dp = Z D;l(y ) ) p € Pa
k% (t) = arg max UL (Ri(t — 1))repe (t), ¥n € N neN
kekn and updates the pattern portion vectoias follows,

o - ™« Proj =1, (T +7D),
Note that the total number of combinations for our joint Lper T

algorithm is polynomialO(P- K) while the that of the naive Where Proja(-) denotes an orthogonal projection on a set A.
exhaustive search i9(P-K*). For each patterp, we select

the best user having the largest valuelBf Ry, (t — 1))r,,(t) User scheduling algorithm

from (14) and then the value of the selected user is usedAn each slott, each BSn € N, activated by pattermp(t)
the pattern selection algorithm. We then find the best patteselects the usek; (t), i.e., I p(t) =1,

p*(t) that maximizes the sum of weighted raltg (R (t —
1))rkp- (t) of the scheduled users. The proof of convergence
to the optimal solution is a slight extension to [15], [16&th
studied only user scheduling for a fixed pattern. We skip the
proof.

kr(t) = arg Inax U,;(Rk(t — 1)rip(t),

and updates the foIIowmg variables for all usérs K,, with
ome constant8 < (31, (2, 03 < 1:

This joint algorithm requires instantaneous channel feedRx(t) (1= B1) Ryt — 1) + Buli(t)rap(t)
back from all users in the network. We assume that at eachi(* (1= B)mp(t = 1) + L),
slott, userk estimates its own SINR for all patterpss Pory 7, (1) (1= Bs)Fip(t = 1) + Barup(t), i Li(t) =1,
upon listening to pilot signals, calculates the instantaise Trp(t — 1), otherwisg
data rater, (¢) and then reports this information to the centaf
coordinator through its associated BS. Two algorithms with different time scales interact with bac

However, this joint pattern selection and user schedulirogher as follows: The pattern portion change algorithm stdju
algorithm still has implementation difficulties. Apart frothe the portion of reuse patterns for every T, slots, using
computational complexity of this algorithm, the centrabco the variablesRy (t), 7, (t), 71, (t). These variables essentially
dinator running the algorithm needs to collect the follagvincorrespond to the long-term averagesigft)ry, (t), mxp(t),
information from each BS: € N : instantaneous data rateand ry,(¢) which are progressively updated at every slot by
rip(t) of all its associated users € /C,, on its available the user scheduling algorithm. This time-scale decomiposit
patternsp € P,. The total amount of feedbacks is quiteand the way of interaction between two algorithms implies
large, i.e, (3, cn IKnl|Pnl), though they may be deliveredthat we design and operate the pattern portion algorithratto |
along with high speed wired links. Furthermore, a series dftract justaverageinterference levels and channel conditions,
tasks, including information feedback from BSs to the antrnot fast time-varying ones like the joint optimal algorithm
coordinator as well as the computation and the distribution Section Ill. Remarking that user scheduling algorithm ca
of central coordinator’s decision, should be performedne o be carried out autonomously, we can significantly reduce
slot. the actual (amortized) complexity per slot, which makes our




Central coordinator and updates the portion of reuse patterns following the in-

| Updates the portion of reuse patters I< creasing direction of network utility.

D, => D" ,
v(”l’”z’m’””) v nEZN » 7r<—Pr0ijEpﬂp:1,(7r+7D). (18)

I Based on the updated portion of patterns, the central co-

| Predetermine the sequence of patterns ) -
ordinator predetermines the sequence of patterns for Figxt
. ) T slots that satisfies:
BSN i
D(N)
o | User User e User » (the total number of patterp) / T, ~ 7, , Vp e P.
"1 | scheduling| |scheduling scheduling
. While there may be many strategies, a nice candidate is a ran-
BS 2 . o dom strategy. The central coordinator sequentially detesm
o | User User User D, the sequence of patterns by rollingfadimensional dieT,,
Bs 1 —LLscheduling] |scheduling schedldl| times with probability of the patterp being .

o User User User Dp . .
”| |scheduling| |scheduling| ***  |scheduling Now we develop the user scheduling algorithm under the

fixed pattern given by the pattern portion change algorithm.
From the Lemma 3.4, for the given pattern the network-wide
user scheduling problem can be decomposed into independent
intra-cell user scheduling problems. Therefore, each Bsisie
algorithms much more implementable. We will discuss th® solve the following problen@-scheduling

price of such complexity reduction, i.e., utility gperfaante
gap with the optimal algorithm in the Subsection IV-C.

Fig. 3. Proposed time-scale decomposed algorithms

Q-scheduling:

'Ry (t — D)) i (t t
(Ik(gl,%)e(/cn) Z Uk(Rk( )) k( )rkp( )

B. Rationale of Time-scale Decomposed Algorithms . hefn
) o _ subjectto  »  I(t) < 1.
The pattern portion change algorithm is a standard gradient =

projection algorithm for the following probler@®-pattern: . ) . .
The user scheduling algorithm solvin@-scheduling is

Q-pattern: straightforward. Each B& € .\, allowed to use the pattem
max Z Up(Ry) = Z U ( Z ¢,€p7rpfkp) independently chooses the best usgft) among it associated
T kex kek  peP user set,, i.e., I (t) = 1:

subjectto > m, = 1, k3 (1) = ang pnax U (Ri(t = D) (8), Vn € Ay, (29)

peEP
where ¢, € [0,1] is the probability that the usek is and updates the following variables for the future purpdse o
scheduled when pattegnis selected, i.e.¢x, - T = Tip the pattern portion change algorithm:

For each of the pattern portion update epoch, i.e., everys £

; T , = (1=p60)Re(t —1) + Bilr(t)rip(t) ,
T, slots, each BS: needs to calculate the partial derivative ﬁkz(t) — (1~ Bk )4 AL ()

(1 = B2)Thp(t — 1) + B2Ik(t) ,

D,(,”? =9U™ Jor, of per-cell utility U(”> with respect to the B (1= Bs)Fap(t — 1) + Bsrup(t), i Tu(t) =1,
portion of patterrp and send these information to the central mhp(t) = Trp(t — 1), otherwise
coordinator. _ B
oUu™ R where 31, 82, B3 > 0 are small averaging parameters;(t),
DM = 5 = > Uk(Re) - 5 (15) my(t) andry,(t) are the average throughput of userthe
T ke Tp average fraction of time that uséris served with pattermp,
wheré and the average instantaneous data rate when thekuier
oR - served with pattermp, respectively.
871';; = QrpTrp = ﬂ_ippszr (16) Remark 4.1:There are two key differences between the

~ algorithm in [8] and ours. First, they additionally intramhu
Note that three parametersiy, 74, and 7y,) required to a virtual schedulerto obtain the fraction of time that the
run this pattern portion update algorithm can be attained Bgheduler chooses usefor transmission in sub-banfl(their
attained by the user scheduling algorithm over long tim@otation: ¢;;). In our algorithm, however, we just obtain the
And then the central coordinator gathers information frdm &raction of time that userk is served with patterrp (our
BSs and calculates the partial derivative of the networltyiti notation: 75,) using theactual schedulewithout any extra
D, = 0U/0m, by aggregating these partial derivatives of thalgorithm. Second, they do not reflect time-varying nature o

local utility, the data rate available to usiein sub-bandj (their notation:
U . R;;) by assuming this rate does not change with time. In
Dy = a—ﬁp = Z Dé ', peP, A7) our algorithm, the long-term average of data rate of user
neN on patternp (our notation:ry,) is not just the average of

3While we differentiateR;,, on m,, we assume thap, is constant. INStantaneous Qata rata. We take the average of instantneo
Please refer to [8] and its technical report for rigorousofiro data rata only if the usek is really served by the scheduler.



TABLE I
COMPARISON BETWEEN JOINT OPTIMAL ALGORITHM(JOA) AND TIME-SCALE DECOMPOSED ALGORITHM(TDA)

| Joint optimal algorithm]| Time-scale decomposed algorithm
. . every slot (user scheduling)
Time-scale of algorithms every slot every T, slot (pattern portion change)
Amount of feedbacks to each BSat each slot [Kn || Pr Kn
Amount of feedbacks to the central coordinatpr >~ _\/ [Kn[[Pn] > nen | Pnl
Period of feedback to the central coordinator 1 »
Convergence speed fast reasonable speed (dependingBy)

Recall that the opportunistic scheduler likely to serveuber BS1 Pattern 1: (BS1, BS2) = (ON.ON) BS2

whose current channel quality is high relative to his own ﬁ Eatterng: (ggl,ggg)ﬂgpfgﬁ) ﬁ
. - . tt : s = s

rate statistics. In other words, oy, reflects the multi-user atiern 3: I )= :

diversity gain from exploiting the channel fluctuation. Pr=tl g Pe=il. 3

(a) Linear two-cell network

C. Complexity Reduction and Its Price

Our time-scale decomposed algorithm still involves signal
ings from BSs to the central coordinator. However, we can
significantly reduce feedback overheads because the period
icity of the feedback is stretched from every slot to every
T, slots. Moreover, the amount of feedbacks is reduced from
(X nen KnllPal) to (X,.cn [Pnl), ie., requires only the
BS-level feedback, not the user-level channel feedback. Th
amount of feedbacks to each BSrom its associated users at
each slot is also reduced froid,, || P,,| and|K,,| because users
need to send channel information only for the predetermined
pattern. Table Il compares the joint pattern selection as®t u
scheduling algorithm with the proposed algorithms based on
time-scale decomposition.

This complexity reduction for implementability comes at
the cost of performance gap with the joint optimal algorithm
This is because the ICI management part in the decomposed
algorithm cannot fully exploit instantaneoirger-cell channel
variations, and onljintra-cell channel variations are oppor-
tunistically utilized. Note that in the joint optimal algthm,
both pattern selection and user scheduling fully explothbo
inter-cell and intra-cell time-varying channel conditsoat a
fast time scale.

As an example, consider a two cell network where two users )
are located at the edge of each cell. Their achievable rates 4 Simulation Setup
limited by severe ICI. The decomposed algorithm will find the We consider two cases of network configuration: one is the
following TDMA-like solution: BS 1 and BS 2 are exclusivelylinear two-cell network and the other is the two-tier multi-
active in order to mitigate the ICI, i.e., the portion for theell network composed of 19 cells. In both cases, the distanc
pattern in which both BSs are active is nearly zero. Howevdretween BSs is 2km. In the linear two-cell network, there are
suppose that both (time-varying) inter-cell channel géios three patterns®? = {1,2,3}. Under pattern 1, both BSs are
BS 1 (or 2) to the user in BS 2 (or 1) are in deep fading &N, and under pattern 2 (resp. 3), only BS 1 (resp. 2) is ON.
some time slot. You can imagine this case as if there werdrathe two-tier multi-cell network, we consider 11 patterns
big wall between two cells. Then the user in cell 1 (or 2) is ndinder pattern 1, all BSs are ON so that each BS receives all the
interfered by the BS transmission in cell 2 (or 1). ThereforéCl from all over the network. However, under well-designed
serving two users simultaneously is transiently optimahis patterns 24 or 5~11 (see Fig. 4 for the pattern design), the
inter-cell deep fading case, whereas the pattern that amy BS using these patterns can expect the first-tier ICl mitgat
BS is active is the solution of the average ICI mitigatiorindo or the mitigation of ICI from one of its neighbors, respeety
optimal algorithm can find this optimal solution by tracking To evaluate the performance under various user distributio
this fast fading while the decomposed algorithm cannot. Vgeenarios, we introduce a variable, so-called, ‘useribigion
finally comment that as we will see in the Section V, in absenodfset’ p € [0, 1], which adjusts the minimum distance between
of fast fading, the performance gap becomes negligible. the BS and the user {ox (cell radiug. Basically, we randomly

(b) Two-tier multi-cell network composed of 19 cells

Fig. 4. Network configurations.

V. SIMULATION RESULTS



distributed users in each cell with this minimum distance
restriction. For example, ifp = 0, users are uniformly

8 T T T T T T T T
generated over the cell. On the other handp i§oes to 1, ——GAT: JOA
users are only located in the edge of the cell. 7 :gﬂi L?HA

The maximum powers of BSs are all the same with 20V Geometric average of user throughputs | - ¢ -AET: JOA|

)]
T

Channel models are implemented following ITU PED-B pat (GAT) -=-AET: TDA
loss model [17] and Jakes' Rayleigh fading model. Th
channel bandwidth is 10MHz, and the time-slot length is 5m
as specified in the IEEE 802.16e standard. The pattern upc
periodT,, = 500, and the step size is chosen to be a typicall
small value, i.e.3; = B2 = 53 = v = 0.001. For each given
parameter set, we ran simulations over 50000 slots.

We consider the performance of the @pnventional uni-
versal reuse schem@Nl), in which all BSs in the network (e ©f edge user hroughputs
are always active without any ICI management, as a basel
and compare the performance of the following two algorithrr
normalized by UNIVERSAL: (i)the joint optimal algorithm
(JOA) and (ii)the algorithm based on time-scale decomposi-
tion (TDA). As performance metrics, the geometric average of
user throughputs (GAT) and the average of edge user throu
puts (AET) are used. We use GAT since maximizing this
equivalent to the system objective (sum of log throughput:

o

-e-AET: UNI

o 5

N
T

Throughput performance [Mbps]
»

o

[
T

0 01 02 03 04 05 06 07 08 09
User distribution offset, p

(@)

(a) Without fast fading

‘ Geon;etric av‘erage o‘f user th‘roughpt‘its —;— GAT‘: JOA
(GAT) —=—GAT: TDA|

2
:

The AET is the measure of cell edge performance defined ! —>—GAT:UNI
the average throughput of users located at cell edges. In « 6f e AETION

simulation, we treat ‘edge users’ as those who are more tt
800m away from their associated BSs in our setup.

-e-AET: UNI

)]
T

w

o
A
1
1

I

1

B. Linear two-cell network case

N
T

Average of edge user throughputs

Fig. 5 shows the GAT and AET performances of thre (AET)

algorithms in the linear two-cell network. In the case witho
fading, the performances of both JOA and TDA are almo
same, w_here they increase the GAT and the AET by&%0 01 02 03 04 05 08 07 o8 oo
(depending on user distribution) and 85% compared to UM User distribution offset, p
We observe a higher performance gain when user distribution
offset is larger (i.e., more users are located at cell edges)
This is because the ICI management is mainly targeted for
the performance improvement of edge users. With fadinlgg. 5.  Throughput performances of three algorithms in twib+oetwork:
however, as discussed in subsection IV-C, there is a perfpint optimal algorithm (JOA), time-scale decomposed algonit(TDA) and
mance gap between JOA and TDA due to loss in opportunigffiversal reuse (UNI).
of time-scale decomposition. Still, the TDA outperforme th
UNI in terms of both the GAT (620% depending on user N i
distribution) and AET (33%). Note that TDA can attain mor(g)' Imbalance load: BS coordination vs. association change
than 1/2 (atp = 0) and up to 2/3 (ap = 0.9) of the GAT We also test the performance in the linear two-cell network
performance gain that is achieved by JOA. having imbalanced loads. We locatedisers 900m away from
BS 1 and2 x LI users 900m away from BS 2, respectively,
where LI quantifies the load imbalance. In the network with
imbalanced load, we have performed simulation to investiga
the amount of additional gain that BS association change can
In Fig. 6 shows the GAT and AET performances in therovide. We compare the following two different approaches
two-tier multi-cell network composed of 19 cells. Althoutiie (i) Association change: load-aware handover in [1d@d (ii)
performance gain is a little small compared to the simpledin BS coordination: our TDAAs a baseline, we also plot the
two-cell network case, trends are similar to those in Figs5 aerformance of UNI.
a whole. With fading, the TDA outperforms the UNI in terms Originally users are associated with the closest BS offerin
of both the GAT (5-25% depending on user distribution) andhe best signal strength. In the case of association change
AET (25%). Similar to the two-cell case, TDA can still attairalgorithm, however, if the expected throughput measur&oh [
1/2~2/3 of GAT performance gain that is achieved by JOA.from the other BS is greater than that from the current BS,

Throughput performance [Mbps]
RS

[
T

o

o

(b) With fast fading

C. Two-tier 19-cell network case



8 . ;
——GAT: JOA
4L —=—GAT: TDA|
—e—GAT: UNI
ol -6 -AET: JOA||
-8 -AET: TDA
5 Geometric average of user -e-AET: UNI
throughputs
(GAT)

w

Throughput performance [Mbps]
B

Average of edge user throughputs
(AET)

—e— BS coordiation — TDA

- ¢ - Association change - [10]

127 —e—Universal reuse — UNI ||

10

)]

I

N

Geometric average of user throughputs [Mbps]

o

0 S S S N S S S 2 6 8 10
0 01 02 03 04 05 06 07 08 09 Load imbalance
User distribution offset, p
Fig. 7.  Association change vs. BS coordination under imludnload
) . scenario.
(a) Without fast fading
8 : :
——GAT: JOA VI. CONCLUSION
71 —=—GAT: TDA| . .
Geometric average of user throughputs | —e— GAT: UNI In this paper, we have focused on the problem of joint ICI
5 ©AT). -6 -AET: JOA|| management and user scheduling in multi-cell networks. We
: ""ﬁgi LTJﬁ|A have shown that the joint optimal algorithm is too complex (i
Ce-AET
c :

w

DY)

Throughput performance [Mbps]
N

Average of edge user throughputs
(AET) '

[
T

o

01 02 03 04 05 06
User distribution offset, p

o

(b) With fast fading

Fig. 6.

universal reuse (UNI).

then the user changes its association. Whenithés small,
users do not change their associations. When we increése

07 08 09

Throughput performances of three algorithms in 19-oetwork:
joint optimal algorithm (JOA), time-scale decomposed algonit(TDA) and

terms of computational and signaling overhead) to be imple-
mented in practical systems. To overcome this complexity an
make the algorithm practical, we have decomposed the atigin
optimization problem into two sub-problems, where we run
ICI management at a slower time scale than user scheduling.
This time-scale decomposition stems from a design rational
that ICI management may not have to track fast changing
dynamics, and it may suffice to attain much gain just by
running it based only on macroscopic network changes. We
empirically show that even with such a slow tracking of sgste
dynamics at the ICI management, our algorithm achieves high
performance gain compared to a conventional universakreus
scheme, as well as is practically implementable compared to
the very complex optimal algorithm.
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