
Neuro-DCF: Design of Wireless MAC via Multi-Agent
Reinforcement Learning Approach

Sangwoo Moon, Sumyeong Ahn, Kyunghwan Son, Jinwoo Park, and Yung Yi
Korea Advanced Institute of Science and Technology

Daejeon, South Korea
{mununum,sumyeongahn,kevinson9473,jinwoo520528,yiyung}@kaist.ac.kr

ABSTRACT
The carrier sense multiple access (CSMA) algorithm has been used
in the wireless medium access control (MAC) under standard 802.11
implementation due to its simplicity and generality. An extensive
body of research on CSMA has long been made not only in the con-
text of practical protocols, but also in a distributed way of optimal
MAC scheduling. However, the current state-of-the-art CSMA (or
its extensions) still suffers from poor performance, especially in
multi-hop scenarios, and often requires patch-based solutions rather
than a universal solution. In this paper, we propose an algorithm
which adopts an experience-driven approach and train CSMA-based
wireless MAC by using deep reinforcement learning. We name our
protocol, Neuro-DCF. Two key challenges are: (i) a stable train-
ing method for distributed execution and (ii) a unified training
method for embracing various interference patterns and config-
urations. For (i), we adopt a multi-agent reinforcement learning
framework, and for (ii) we introduce a novel graph neural network
(GNN) based training structure. We provide extensive simulation
results which demonstrate that our protocol, Neuro-DCF, signifi-
cantly outperforms 802.11 DCF and O-DCF, a recent theory-based
MAC protocol, especially in terms of improving delay performance
while preserving optimal utility. We believe our multi-agent rein-
forcement learning based approach would get broad interest from
other learning-based network controllers in different layers that
require distributed operation.

CCS CONCEPTS
• Networks → Link-layer protocols; • Computing method-
ologies →Multi-agent reinforcement learning.

KEYWORDS
Wireless MAC, Optimal CSMA, Multi-agent RL

ACM Reference Format:
SangwooMoon, Sumyeong Ahn, Kyunghwan Son, Jinwoo Park, and Yung Yi.
2021. Neuro-DCF: Design of Wireless MAC via Multi-Agent Reinforcement
Learning Approach. In The Twenty-second International Symposium on The-
ory, Algorithmic Foundations, and Protocol Design for Mobile Networks and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiHoc ’21, July 26–29, 2021, Shanghai, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8558-9/21/07. . . $15.00
https://doi.org/10.1145/3466772.3467043

Conflict Conflict

Starvation

802.11 O-DCF Ours

Th
ro

ug
hp

ut Large queue

Q
ue

ue
 le

ng
th

F1 F2 F3 F1 F2 F3

F1 F2 F3

Figure 1: FIM topology example.

Mobile Computing (MobiHoc ’21), July 26–29, 2021, Shanghai, China. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3466772.3467043

1 INTRODUCTION
802.11 DCF (Distributed Coordination Function) has often been
reported to suffer from coordinating both throughput and fairness.
A representative example, depicted in Figure 1, is when three flows,
say 𝐹1, 𝐹2, and 𝐹3, form a so-called flow-in-the-middle (FIM) topol-
ogy, where each of the two flows 𝐹1 and 𝐹3 conflict with the flow
𝐹2, while 𝐹1 and 𝐹3 do not conflict with each other. In this case,
802.11 DCF experiences a serious starvation of the “middle” flow
𝐹2, whose performance becomes almost zero. Over the last two
decades, there has been an extensive array of research [12, 34, 41]
to solve these problems of 802.11 DCF.

Recent interesting approaches, e.g., O-DCF [19] and A-DCF [18],
redesigned the way of controlling the parameters of CSMA (Carrier
Sense Multiple Access), by adopting some theoretical results (often
called optimal CSMA [15]). These approaches utilize additional local
information (e.g., queue length) and respond to network behaviors
(e.g., collisions) in a differentiated manner, so as to implicitly under-
stand the neighboring interference patterns. Despite some degree of
improvement of O-DCF and A-DCF, relying on queue length only is
not enough to fully incorporate various interference patterns. Thus,
even in O-DCF and A-DCF, there are non-negligible "patched-up"
engineering solutions which often have poor performances in some
metric such as delay [17] (see Figure 1) and compatibility with TCP
[18]. They are also unprincipled solutions to this problem and thus,
they may have sub-optimal performances in cases which they have
not been exhaustively tested.

In this paper, we take a learning-based approach to train a prac-
tical wireless MAC controller, where we call the resulting MAC
protocol Neuro-DCF. Our protocol is inspired by the recent break-
through of Deep Reinforcement Learning (DRL) [25], which intro-
duces an experience-driven or data-driven approach for training the
controller from experience samples without explicitly knowing the
model structure. This learning-based approach is showcased to be
capable of solving complicated games with extremely large state
space. DRL has already received attention from other fields in the
networking community, and several latest proposals have come out

https://doi.org/10.1145/3466772.3467043
https://doi.org/10.1145/3466772.3467043

MobiHoc ’21, July 26–29, 2021, Shanghai, China Sangwoo Moon, Sumyeong Ahn, Kyunghwan Son, Jinwoo Park, and Yung Yi

to replace traditional rule-based networking protocols such as traf-
fic engineering or congestion control [14, 28, 43]. The goal of this
paper is to develop an experience-drivenMAC and qualitatively and
quantatively investigate the potential of experience-driven MAC.

There are two key design requirements that must be satisfied
when developing a practical wireless MAC using an experience-
based approach. We henceforth summarize them below in conjunc-
tion with the challenges and our design choices.

1) Training for distributed operation: Coordinating the wire-
less nodes for the medium access should involve minimal or
entirely no communication, as in 802.11 DCF. One simple ap-
proach is to assume a single coordinator in training which is
aware of all network status and is in charge of operating all wire-
less nodes. However, this does not allow distributed operation
of nodes in execution. To tackle this, we formulate the problem
as a cooperative multi-agent RL (MARL) problem, where all RL
agents are trained to optimize a common objective. One naïve
approach is to train every agent in the environment separately,
treating other agents’ behaviors as part of the environment. This
approach does not work, especially in complex scenarios, be-
cause of the non-stationarity problem caused by the change in
policies of other agents. Thus, it is necessary to understand the
complex interplay among multiple controllable entities and to
develop a training structure which induces cooperation even
without exchanging status information among agents.
Our choice: We adopt a recently introduced paradigm called
Centralized TrainingwithDecentralized Execution (CTDE). CTDE
has a centralized training scheme which effectively utilizes the
joint experiences to learn decentralized policies for the agents
which can be executed separately. This paradigm has been used
in many MARL approaches, e.g., [7, 23], but the key design
choice lies in which RL algorithm to choose and how to incorpo-
rate the policy evaluation and improvement modules regarding
distributed multi-agent operations, all of which depends on the
target task. We use Proximal Policy Optimization (PPO) algo-
rithm [33] as our baseline RL algorithm, which is known to be
both sample efficient and stable at training, and we extend it
for multi-agent scenarios. See Figure 2 for the overall training
structure of our Neuro-DCF.

2) Avoiding per-scenario training. A classical RL training in the
MAC scheduling task is to have separated trainings for every
specific network topology and the number of nodes/links. This
is extremely challenging to train in MARL, unless the state space
and the number of agents is relatively small. It would be highly
beneficial if our MAC controller is applicable to real-world net-
working environments. To make our MAC controller practical,
the trained controller should incorporate as many general inter-
ference topologies and network scales as possible. Our objective
is to generalize a network controller to multiple interference
structures without retraining on every single instances, and to
come up with a policy that is capable of dealing with a wide
range of interference scenarios.
Our choice: In order to solve the generalization objective, we
make three-fold design choices. First, we adopt a graph neural

network (GNN) [16] structure to represent the interference rela-
tionships among links. Such GNN representations are used for
rendering the generalized value function, which is an essential
component of reinforcement learning. A GNN takes graph struc-
tured inputs and outputs an embedded feature representations.
The common approach is to design a graph convolutional layer
which operates similarly to the convolutional neural network
(CNN). The graph convolution works by applying a filter which
summarizes the features of a given node and its neighboring
nodes. Utilizing the graph convolution structure, GNN is suit-
able for the parameterized representation of the local interactions
between agents, and the number of parameters does not increase
with respect to the size of the input graph.
Second, in order to effectively train our GNN value function, we
introduce a training method called random graph training, which
serves a similar purpose as mutli-task RL [39]. In this method,
we choose randomly sampled interference graphs from a given
distribution. We generate different graphs for each episode, and
train the wireless MAC controller under different environments
using the same value network. The random graph training en-
sures our policy to behave efficiently in the graphs within the
distribution used in the training phase.
Finally, we suggest to use a parameter shared (PS) structure,
where all controllers have a same set of model parameters. This
design complies to the general design principle of the network
protocol, where the nodes in the network have to operate ac-
cording to the same algorithm. The PS architecture has two
benefits in our framework. First, the number of parameters does
not change as the scale of network grows, thereby enabling our
algorithm to be easily adapted to large scale networks. Second,
without PS, it is nontrivial to deploy the trained agents onto the
network since we have to additionally decide which model to
deploy on each wireless nodes. With the aid of GNN and PS, we
ensure that the mentioned requirements are satisfied.

We provide extensive evaluation results using the ns-3 network
simulator [31], from simple interference topologies such as fully-
connected (FC) to large, complex and general structures. We com-
pare our trained MAC algorithms with 802.11 and O-DCF in terms
of significant performance measures like fairness and delay. The
results indicate that Neuro-DCF outperforms 802.11 in terms of net-
work utility and achieves superior delay performance compared to
O-DCF without any explicit control-plane communication during
execution. In particular, we check that our Neuro-DCF achieves
up to 204.4% gain in total utility over 802.11 and queue length de-
creases by up to 83.5% over O-DCF. Moreover, additional studies
regarding the generalization ability of Neuro-DCF show that our
random graph training covers a reasonable area of generalization
over graph distribution.

Related work. The performance problem of 802.11 DCF has been
repeatedly reported and tackled by numerous papers. The initial
effort proposed the idea of dynamically adjusting the contention
window (CW) under 802.11 DCF [3, 12], and the following papers
came out to study about practical implementation issues [9, 34].
However, these early solutions are limited to specific topologies
such as fully connected (FC) and did not guarantee any improve-
ments on more problematic topologies such as FIM. To achieve

Neuro-DCF: Design of Wireless MAC via Multi-Agent Reinforcement Learning Approach MobiHoc ’21, July 26–29, 2021, Shanghai, China

the optimal wireless MAC in general topology, the theoretical in-
sights were given by the optimal CSMA [15], with the specific
adjusting rules of CSMA parameters associated with the queue
length. However, the optimal CSMA algorithms are generally not
considered as a practical algorithm since they make some unreal-
istic assumptions for theoretical soundness (See [44] for details).
Practical versions like O-DCF [19] or A-DCF [18] have shown that
the optimal CSMA is reasonably effective by introducing some case-
by-case engineering solutions. These kinds of heuristic approaches
are not guaranteed to work properly in generalized situations and
might be prone to unpredictable failure scenarios.

There has been a series of studies regarding the experience-
driven approach on access control. Early works assumed a simpli-
fied finite-state Markov channel (FSMC) to apply simple RL algo-
rithms such as Q-learning, which is targeted for efficiency or delay
[24]. Since DRL was introduced, it has now become possible to learn
complex channel dynamics with deep neural networks. Therefore,
the access control problem has been re-investigated using these
DRL techniques. Single-agent DRL is applied to the problem by
assuming a single controlling entity, such as cognitive radio [40]
or scheduling in cellular networks [5] by base station control.

Since the access control is a multi-agent problem in nature, there
have been some works applying DRL in the multi-agent setting.
These works are largely divided into cooperative and competitive
problems. Examples of competitive setting include unlicensed spec-
trum management in LTE [4] or independent ALOHA [20]. The
cooperative setting considers the problem as a global optimization
problem with a single objective. [28] is the most closely related
work to ours as it targets multiple spectrum access problem for
optimizing proportional fairness (PF) objective by formulating the
problem as a cooperative MARL problem.

DRL has been applied to other network control domains, such as
traffic engineering [43] and congestion control [14]. [43] modified
the DDPG [22] algorithm for the traffic engineering problem which
involves bandwidth management of multiple co-existing flows. [14]
provided DRL-based congestion control in TCP and showed sig-
nificantly improved performance compared to the current CUBIC
congestion control.

2 BACKGROUND
2.1 Deep Reinforcement Learning (DRL)
Reinforcement Learning (RL) [35] has been widely used in various
decision making problems because of its ability to evaluate and
optimize the expected sum of desired rewards, without relying on
prior knowledge of the problem. RL uses Markov Decision Process
(MDP) as a mathematical formulation.

A fully-observable MDP is defined as a tuple G = ⟨S,A, 𝑃, 𝑟, 𝛾⟩.
At each discrete time step 𝑡 ∈ {0, 1, · · · , }, an RL agent observes
the state 𝑠𝑡 ∈ S, and selects an action 𝑎𝑡 ∈ A, according to the
stochastic mapping rule called policy 𝜋 (𝑎 |𝑠) : S × A ↦→ [0, 1].
Given the action from the agent, the environment changes its state
depending on the transition 𝑃 (𝑠 ′ |𝑠, 𝑎) : S × A × S ↦→ [0, 1]. After
the transition, the reward 𝑟𝑡 is decided from the reward function
𝑟 (𝑠, 𝑎) : S × A ↦→ R, and the state in a next step 𝑠𝑡+1 is given
to the agent. The objective of RL problem is to obtain an optimal
policy 𝜋∗ that maximizes the expected discounted sum of reward

E𝑠𝑡 ,𝑎𝑡∼𝜋 [
∑
𝑡 𝛾

𝑡 · 𝑟𝑡]. The discount factor 𝛾 ∈ [0, 1) is often used
to represent the shrinked horizon of the problem for mathemati-
cal tractability. The commonly used technique is called function
approximation, in which we parameterize the policy 𝜋 and value
function 𝑄 as 𝜋𝜃 and 𝑄𝑤 , respectively. With the power of deep
neural networks, we can represent the policy and value function
with a higher level of abstraction. [25].

One way to solve the RL problem is to iteratively apply the
gradient to optimize 𝜋𝜃 using the formula called policy gradient
[36], written as

𝐿PG (𝜃) = E𝑠𝑡 ,𝑎𝑡∼𝜋𝜃 [log𝜋𝜃 (𝑎𝑡 |𝑠𝑡)𝐺𝑡] , (1)

where 𝐿PG (𝜃) is the objective function. The future cumulative re-
ward 𝐺𝑡 =

∑𝑇
𝑡 ′=𝑡 𝛾

𝑡 ′−𝑡𝑟𝑡 ′ can be estimated with the advantage
function 𝐴𝑤 without introducing any bias, and the policy gradient
becomes

𝐿PG (𝜃) = E𝑠𝑡 ,𝑎𝑡∼𝜋𝜃 [log𝜋𝜃 (𝑎𝑡 |𝑠𝑡)𝐴𝑤 (𝑠𝑡 , 𝑎𝑡)] . (2)

The advantage 𝐴𝑤 is often estimated as a temporal difference (TD)
residual given by

𝐴𝑤 (𝑠𝑡 , 𝑎𝑡) ≈ E [𝑟𝑡 + 𝛾𝑉𝑤 (𝑠𝑡+1) −𝑉𝑤 (𝑠𝑡)] , (3)

given the state-value function 𝑉𝑤 (𝑠𝑡). Using the value function to
estimate the policy gradient is specifically called actor-critic, as the
state-value function 𝑉𝑤 (called critic) is used to derive the update
equation of the policy 𝜋𝜃 (called actor).

2.2 Multi-agent RL
In multi-agent RL, each agent has only partial information about
the entire state over time, based on which it chooses its action. This
partial information is often a local information, which naturally
leads to distributed execution. Due to this reason, the following
decentralized partially observable MDP (Dec-POMDP) [29] is used
as the de facto standard for modeling MARL, i.e., a tuple DG =

⟨S,A, 𝑃, 𝑟, 𝛾,N ,O, 𝑍 ⟩, where 𝑠 ∈ S denotes the true state of the
environment. Each agent 𝑖 ∈ N := {1, · · · , 𝑁 } chooses an action
𝑎𝑖𝑡 ∈ A at each time step 𝑡, 1 giving rise to a joint action vector, a :=
[𝑎𝑖]𝑁

𝑖=1 ∈ A𝑁 . Function 𝑃 (𝑠 ′ |𝑠, a) : S × A𝑁 × S ↦→ [0, 1] governs
all state transition dynamics. Here, we focus on the cooperative
case, namely every agent shares the same joint reward function
𝑟 (𝑠, a) : S × A𝑁 ↦→ R 2, and 𝛾 ∈ [0, 1) is the discount factor. Each
agent has its individual, partial observation 𝑜𝑖 ∈ O according to
some observation function 𝑍 (𝑠, 𝑖) : S × N ↦→ O . Each agent also
has an action-observation history 𝜏𝑖 ∈ T := (O ×A)∗, on which it
conditions its stochastic policy 𝜋𝑖 (𝑎𝑖 |𝜏𝑖) : T × A ↦→ [0, 1]. Each
agent conditions its policy on the history of observations if the
state is partially observable.
Why hard?. The Dec-POMDP problem is known to be challenging
because it is not straightforward to apply existing single-agent
RL algorithms to solve it. The key difficulty comes from the non-
stationarity phenomenon [11]. With a single-agent RL perspective,
each agent would formulate a single-agent value function, denoted

1We denote the agent index in a superscript and the time index in a subscript of
notations.
2If the agent 𝑖 has its own interest of the reward function 𝑟 𝑖 (𝑠, a) , we call this formu-
lation a Partially Observable Stochastic Game (POSG), which is a more general form
of (not necessarily cooperative) MARL.

MobiHoc ’21, July 26–29, 2021, Shanghai, China Sangwoo Moon, Sumyeong Ahn, Kyunghwan Son, Jinwoo Park, and Yung Yi

Environment

Actor1 Actor2 Actor𝑖

Parameter Sharing

…

𝑜!" ,𝑎!"… 𝑜!# ,𝑎!#… …

Critic
𝑟!

… …

Graph info.
Actor Info. flow
Critic Info. flow

Decentralized Execution
Centralized Training

𝑆, 𝑅 Pair Conflict

Figure 2: The depiction of the centralized training with de-
centralized execution (CTDE) architecture in wireless MAC.

as 𝑄𝑖 (𝜏𝑖 , 𝑎𝑖). This perspective treats the other agents as part of
the environment which the agent has to interact with. However,
the policy of each of the other agents, denoted as 𝜋−𝑖 , is changed
throughout the training, which makes the perceived environment
to change. The MDP from the single agent perspective is no longer
stationary at this point, and the training stability is not guaranteed.
Indeed, naïvely applying single-agent algorithms demonstrated
underwhelming results [37]. Therefore, research on cooperative
MARL [7, 23] is focused on proper evaluation and improvement of
the joint policy.

3 DESIGN OF NEURO-DCF
We next provide the explanation of our approach which solves
the wireless MAC problem with reinforcement learning. We first
explain the overall structure of the centralized training with de-
centralized execution. Then, we discuss the problem formulation
and the definition of our MDP. Next, we describe our algorithmic
approaches to solve the problem setting.

3.1 Overall Training Structure
Recently, there have been advances in techniques to train decentral-
ized policies, where we can fully access the simulation or laboratory
environment during the training process. This Centralized Training
with Decentralized Executions (CTDE) principle became popular
in multi-agent planning, as it can provide a general framework
for cooperative yet decentralized MARL. The actor-critic architec-
ture particularly fits well with the CTDE framework as we can
separate the role of the actor and critic, and differentiate the in-
formation flow onto these components. The actor is responsible
for the agent’s action selection using its local observations, and
the critic comprehends the overall state and action information
and predicts the future rewards. The reward to be predicted is a
global reward, which is the natural choice when devising a cooper-
ative objective. Figure 2 describes the different information flows
of actor and critic. Some actor-critic based CTDE algorithms in-
volving deep neural networks have came out lately, following the
abovementioned design principle [7, 23]. In these works, the actor
usually takes a form of recurrent neural networks to encode the
trajectory 𝜏𝑖 , and operates in a decentralized manner. The critic
estimates the value of joint actions by representing the Q-function
as 𝑄 (𝑠, a). This centralized representation of the critic can evaluate
cooperative actions and enforce the actors to coordinate.

Figure 2 represents the CTDE architecture of our framework.
According to the figure, the actor collects its local observation 𝑜𝑖𝑡 to
decide its action 𝑎𝑖𝑡 , and the critic receives the overall joint obser-
vation [𝑜𝑖𝑡]𝑁𝑖=1 and action [𝑎𝑖𝑡]𝑁𝑖=1, along with the graph structure
of the environment. Here, we assume that the true state 𝑠𝑡 can be
approximated with the joint observation of the agents [𝑜𝑖𝑡]𝑁𝑖=1. For
the training environment, we configure the ad-hoc network with
multiple one-hop UDP flows. It is assumed that all sender-receiver
pairs are disjoint, and the interference relationships are represented
as an undirected graph (see Figure 5a for example). The node in
the interference graph represents the one-hop flow, and the edge
represents the interference relationship between two flows. Along
with the joint observation and joint action, our critic also evaluates
this graph structure to effectively understand the environment. The
critic predicts the value function and is trained with the cooper-
ative reward signal 𝑟𝑡 . The critic estimation is used to derive the
gradient for the policy update by (2). Note that the critic execution
and reward signaling are only used in the training phase, and we
require only the trained actor model in execution.

3.2 Observations, Actions, and Rewards
We now define the observation, action, and reward functions, re-
spectively. The agent is the wireless sender in our problem, and
it is in charge of gathering the local observations and executing
the actions accordingly. A single cooperative reward is given to the
agents only at training time. Once the trained policy is deployed,
the nodes can operate in a completely decentralized manner. We
explain the design rationale and details of our selection for the
observations, actions, and reward in the following paragraphs.
Observation. Since we model the problem as a Dec-POMDP task,
each observational feature must be locally perceptible to the agents.
Additionally, the chosen observations are completely accessible us-
ing the standard 802.11 radio equipment without using additional
sensory hardwares, so that it can be applied just by modifying
the software layer. The observational features are defined as rep-
resented in Table 1. We denote the observation vector of agent 𝑖
at time 𝑡 by 𝑜𝑖𝑡 . The observation includes the measurements of the
network statistics, i.e., link throughput and the end-to-end delay.
The network statistics are collected for a fixed monitoring inter-
val (MI). Since 802.11 MAC layer provides the Acknowledgement
(ACK) frame to indicate the success of the transmission, we utilize
the ACK frame to estimate transmission rate, delay and frame er-
ror rate. The average frame delay is calculated as an exponential
weighted moving average (EWMA) estimate of per-frame end-to-
end delay measured from the ACK frame timestamp. In addition,
the MAC layer internal states, such as the backlog length and cur-
rent transmission parameters, are also included in 𝑜𝑖𝑡 . The indirect
neighbor detection is possible by the Clear Channel Assessment
(CCA) mechanism, which is an essential component of CSMA.
Action. Figure 3 describes our RL agent’s MAC layer control struc-
ture. In order to minimize the frame delay, we control both arrival
and service processes of the MAC layer by jointly control the traffic
input and MAC. Accordingly, we have a two-dimensional action
space, and we make use of two adjoint controllers in execution.
The rate control action 𝑎𝑖

𝑡,RC takes the role of adjusting enqueue
rate from Control Queue (CQ) to Medium Access Queue (MAQ), as

Neuro-DCF: Design of Wireless MAC via Multi-Agent Reinforcement Learning Approach MobiHoc ’21, July 26–29, 2021, Shanghai, China

qlen Mac layer stateCwmin interval

Upper layer

Control Queue (CQ)

Media Access Queue (MAQ)

MAC layer

Rate Control (RC)
𝒐𝒕𝒊 Actor

𝒂𝒕,𝐑𝐂𝒊

𝒂𝒕,𝐌𝐀𝐂𝒊

thpt lat err_rate busy_cca
802.11 Hardware

𝐂𝐖𝐦𝐢𝐧
Interface Queue (IFQ)

Wireless

RC

MAC

ACK Frame

Data path
Control path
Neural Network

𝒉𝒕𝒊

Figure 3: The overall operational structure of the RL actor to theMAC layer. The observational features can be collected locally
without any communications. We use LSTM neural network with hidden state ℎ𝑖𝑡 and sequential observations 𝑜𝑖𝑡 to encode the
trajectory 𝜏𝑖𝑡 .

Feature Description
thpt The instantaneous throughput
qlen The length of MAQ
lat EWMA estimate of the frame delay
err_rate Frame error rate
busy_cca The fraction of time when the CCA state is

either RX or CCA_BUSY
CW Current selection of CW
interval Current selection of frame injection interval

Table 1: The observation features used by an agent
shown in Figure 3. The rate control action is chosen between evenly
spaced discrete numbers as unit of packets per second (pps). The
MAC action 𝑎𝑖

𝑡,MAC decides the Contention Window (CW), which
dictates the backoff period before channel access in the CSMA algo-
rithm. The CW parameter is chosen as 2𝑛 − 1, where 𝑛 ∈ {0, · · · , 8}.
The backoff timer is randomly chosen from the interval [0, CW],
therefore preserving some randomness for collision avoidance.
Reward. Now we propose our reward function which reflects the
queuing delay performance and the utility performance. We are
incorporating a cooperative Dec-POMDP setting, where the reward
function is shared among all agents. We define our reward function
with two components as

𝑟𝑡 := 𝑟𝑡,NUM + 𝛽𝑟𝑡,queue, (4)

where 𝛽 is the balancing parameter between the components. Note
that the reward function could be designed differently to cope with
other design objective than utility or delay, and it would be an
interesting future research to consider multiple other rewards with
our CTDE design.

The first component 𝑟𝑡,NUM reflects the network utility maxi-
mization (NUM) objective, which is calculated by measuring the
average throughput of each agent. We call this reward component
as utility reward. Thus, we define our reward functions as

𝑟𝑡,NUM :=
∑
𝑖

𝑈 (𝑥𝑖𝑡). (5)

where 𝑈 (·) is the utility function. The utility function is a con-
tinuous, increasing, and strictly concave function to reflect the
diminishing return of the rate. When we specifically choose the
𝑈 (𝑥) = log(𝑥), the objective represents proportional fairness (PF),
and it is recognized to be the unified measure of efficiency and

fairness. 𝑥𝑖 indicates the EWMA-approximated throughput of the
link 𝑖 , calculated as

𝑥𝑖𝑡 := (1 − 𝛼)𝑥𝑖𝑡−1 + 𝛼𝑥𝑖𝑡 , (6)

where 𝑥𝑖𝑡 is the instantaneous throughput of the agent 𝑖 at time step
𝑡 , and 𝛼 is a smoothing constant. This moving average NUM reward
expresses the short-term estimate of the long-term utility. During
training, the algorithm is reinforced to maximize the given reward,
which results in maximizing the short-term utility in every time
step, eventually contributing to the long-term utility maximization.

The second component 𝑟𝑡,queue represents the queueing delay
objective. Following Little’s theorem, the average queuing delay is
equivalent to the average queue length. Therefore, we define our
delay component as a negative sum of queue length of the agents,

𝑟𝑡,queue := −
∑
𝑖

𝑞𝑖𝑡 , (7)

and we call this reward component as queue reward. Here𝑞𝑖𝑡 denotes
the MAQ length of the agent 𝑖 at time step 𝑡 .

We now explain the details of our Neuro-DCF algorithm to
solve the Dec-POMDP environment defined previously. The wire-
less MAC problem has several requirements and challenges when
viewed from RL perspective, such as non-stationarity. The overall
structure of Neuro-DCF is outlined in Figure 2, where our algo-
rithm is divided into actor and critic components. Figure 3 and
4 depicts the actor and critic structure, respectively. In Figure 3,
we encode the history 𝜏𝑖𝑡 by using an LSTM network with input
𝑜𝑖𝑡 and hidden state ℎ𝑖𝑡 . In Figure 4, every Dense and Conv blocks
represent a neural network with a set of trainable parameters. We
further demonstrate detailed description of our algorithm. We first
present an extended version of PPO [33] for updating the actors
in the cooperative MARL problem. Next, we propose a novel critic
architecture with graph embedding to apply to arbitrary network
topologies. Finally, we introduce parameter sharing that learns a
single shared policy for multiple actors simultaneously.

3.3 Multi-Agent Proximal Policy Optimization
(MAPPO)

Primer of PPO. We take Proximal Policy Optimization (PPO) [33]
as our baseline RL algorithm, which is known to be one of the
most efficient and stable policy gradient algorithms up to date. The

MobiHoc ’21, July 26–29, 2021, Shanghai, China Sangwoo Moon, Sumyeong Ahn, Kyunghwan Son, Jinwoo Park, and Yung Yi

Dense

𝒂𝒕,𝐌𝐀𝐂𝒊 𝒐𝒕𝒊

𝝓(𝒐𝒕𝒊 , 𝒂𝒕,𝐌𝐀𝐂𝒊)

Dense

𝝓(𝒐𝒕𝒊 , 𝒂𝒕,𝐑𝐂𝒊)

𝒂𝒕,𝐑𝐂𝒊

Critic_RC Critic_MAC

Dense

𝝓(𝒐𝒕
𝒋, 𝒂𝒕

𝒋)

𝒂𝒕
𝒋𝒐𝒕

𝒋

𝒃𝐑𝐂𝒊 (𝒔, 𝐚𝐭*𝒊 , 𝒂𝒕,𝐌𝐀𝐂𝒊) 𝒃𝐌𝐀𝐂𝒊 (𝒔, 𝐚𝐭*𝒊 , 𝒂𝒕,𝐑𝐂𝒊)

𝒋 ≠ 𝒊

𝝓(𝒐𝒕
𝒋 , 𝒂𝒕

𝒋)

𝝓(𝒐𝒕𝒊 ,𝒂𝒕,𝐑𝐂𝒊)

𝝓(𝒐𝒕𝒌, 𝒂𝒕𝒌)

𝒃𝐌𝐀𝐂𝒊 (𝒔, 𝐚𝐭*𝒊 , 𝒂𝒕,𝐑𝐂𝒊)

Dense

Dense

Dense

Dense

Conv

Conv

Conv

Conv

Conv

Conv

Skip connection

Critic_MAC

+

Parameter Sharing

𝒋

𝒊

𝒌

Figure 4: The centralized critic architecture of our algorithm.

PPO algorithm utilizes the same experience trajectory multiple
times, by enforcing the policy update constraint while we apply
the policy gradient. PPO restricts the policy update ratio within the
trust region by clipping the advantage functions, i.e. the objective
function becomes:

𝐿PPO (𝜃) = E𝑠𝑡 ,𝑎𝑡∼𝜋𝜃
[
ppo_clip

(
𝜋𝜃 (𝑎𝑡 |𝑠𝑡)
𝜋𝜃old (𝑎𝑡 |𝑠𝑡)

, 𝜖, 𝐴𝑡

)]
. (8)

Here ppo_clip(·, 𝜖, 𝐴𝑡) denotes the clipping function specifically
defined in [33] to prevent excessively large policy updates, 𝜃old are
the parameters before the update, and 𝐴𝑡 is the advantage function
calculated by Generalized Advantage Estimation (GAE) [32], as

𝐴𝑡 = 𝛿𝑡 + (𝛾𝜆)𝛿𝑡+1 + · · · + (𝛾𝜆)𝑇−𝑡−1𝛿𝑇−1,

where 𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉𝑤 (𝑠𝑡+1) −𝑉𝑤 (𝑠𝑡) .
(9)

In the above equation, 𝜆 is a GAE hyperparameter. The GAE ad-
vantage generalizes the one-step TD residual in (3).
MAPPO. However, since PPO is a single-agent RL algorithm, it
is non-trivial to apply PPO to solve a multi-agent problem. We
propose multi-agent PPO (MAPPO) algorithm as the multi-agent
extension of PPO. In MAPPO, the multi-agent advantage of agent 𝑖
is given as

𝐴𝑖
𝑡 := 𝛿𝑖𝑡 + (𝛾𝜆)𝛿𝑖𝑡+1 + · · · + (𝛾𝜆)𝑇−𝑡−1𝛿𝑖𝑇−1,

where 𝛿𝑖𝑡 := 𝑟𝑡 + 𝛾𝑏𝑖𝑤 (𝑠𝑡+1, a−𝑖𝑡+1) − 𝑏𝑖𝑤 (𝑠𝑡 , a−𝑖𝑡).
(10)

Here, we substitute the value function 𝑉𝑤 (𝑠𝑡) into 𝑏𝑖𝑤 (𝑠𝑡 , a−𝑖𝑡),
which is defined as the counterfactual baseline. 3 𝑏𝑖𝑤 (𝑠𝑡 , a−𝑖𝑡) es-
timates the future reward of the joint action excluding the action
of agent 𝑖 . The term “counterfactual” comes from the deductive
reasoning process to determine the impact of agent 𝑖’s action to
the value. This idea first came out in [7], but we largely enhanced
[7] by combining it with a trust region idea, thus improving the
sample efficiency.

Since we have to jointly decide the rate control (RC) and MAC
actions, we decompose our actor architecture to separately exe-
cute each action, denoted by 𝑎𝑖𝑡 = (𝑎𝑖

𝑡,RC, 𝑎
𝑖
𝑡,MAC). For training

multiple actions, we adopt the approach from [42] to calculate
each action’s advantage separately. The multi-agent counterfactual
baseline 𝑏𝑖 (𝑠, a−𝑖) is further divided into per-action counterfactual
baselines as 𝑏𝑖RC (𝑠, a

−𝑖 , 𝑎𝑖MAC) and 𝑏
𝑖
MAC (𝑠, a

−𝑖 , 𝑎𝑖RC). Consequently,
we can further assign the credit to each action components. By con-
sidering multi-agent and per-action counterfactuals, the baseline
reduces the variance of the gradient without changing expectation.
The computations take place in the centralized critic unit.

3The superscript −𝑖 represents the agent indices excluding agent 𝑖 .

3.4 Graph Embedding Critic
One important aspect of the networking protocol is that the al-
gorithm should be capable of adapting to arbitrary situations. For
example, TCP congestion control should be able to run on any given
link capacities without changing its operational parameters. This is
also the case in our MAC controller design, where the agent has to
function in arbitrary network structures. This requirement becomes
especially challenging when we use learning-based methods as it is
trained using samples of interplay between agents. Even though we
train ourMAC algorithm in one specific environment, the algorithm
has no guarantee to work properly in other environments.

Graph neural networks. To overcome the challenge, we need a
consistent representation of the critic regardless of the changes
in graph topology. We design our multi-agent critic with a graph
neural network (GNN) structure. In the last few years, GNNs have
shown its great usefulness on graph-structured domains such as
social networks [16] or protein-interaction networks [6]. The most
widely used method is graph convolutional network (GCN) [16],
which updates the node representations from one layer to the other,
with similar operation as the convolutional neural network. The
convolutional layer integrates the feature vectors from neighbor
nodes and generates the latent feature vector. Note that the update
only depends on the neighborhoods, independent of graph size.
The graph-structured connectivity is also applied to represent the
multi-agent interaction, and exploiting the graph structure in a
cooperative MARL has proven to be effective in certain areas [1, 27].

Figure 4 shows the detailed architecture of our critic. The left side
of the figure describes the separated counterfactual calculation of
two different control components, i.e., rate control and MAC. Each
agent 𝑖 has two distinct node representations from {𝑜𝑖𝑡 , 𝑎𝑖𝑡,MAC}
and {𝑜𝑖𝑡 , 𝑎𝑖𝑡,RC}, each goes into 𝜙 (𝑜𝑖𝑡 , 𝑎𝑖MAC) and 𝜙 (𝑜

𝑖
𝑡 , 𝑎

𝑖
RC), respec-

tively. The “Dense” block denotes the fully-connected neural net-
work, and 𝜙 (·) denotes the neural embedding of the inputs, with
possibly different parameters. We call these embeddings as per-
action embeddings. For all 𝑗 ≠ 𝑖 , we calculate the embeddings from
{𝑜 𝑗𝑡 , 𝑎

𝑗
𝑡 } and produce 𝜙 (𝑜 𝑗𝑡 , 𝑎

𝑗
𝑡), which we call other-agent embed-

dings. All embeddings 𝜙 (·) correspond to the node features which
are fed into the GNN. We now combine the per-action embeddings
and other-agent embeddings to represent the per-action baselines,
𝑏𝑖RC (·) and 𝑏

𝑖
MAC (·). For the baseline calculation, the embedding

combination {𝜙 (𝑜𝑖𝑡 , 𝑎𝑖MAC), [𝜙 (𝑜
𝑗
𝑡 , 𝑎

𝑗
𝑡)]𝑗≠𝑖 } is used to approximate

{𝑠, a−𝑖 , 𝑎𝑖MAC}, which is used for calculating 𝑏𝑖RC (𝑠, a
−𝑖 , 𝑎𝑖MAC). Cal-

culation of 𝑏𝑖MAC (𝑠, a
−𝑖 , 𝑎𝑖RC) works in a similar manner.

The right side of the figure shows a closer look of the critics
Critic_RC and Critic_MAC, which have the same structure but have

Neuro-DCF: Design of Wireless MAC via Multi-Agent Reinforcement Learning Approach MobiHoc ’21, July 26–29, 2021, Shanghai, China

𝑆!

𝑅!

𝑆"

𝑅"

𝑆#

𝑅#

1 2 3
Flow Interference

{S, R} Pair

(a) FIM

1
2

3

1
2

3
n ……

…

…
…

FC-3

FC-𝑛

(b) FC-𝑛

21

34

Distance

𝐷(3,4)

𝐷(1,2)

… ………

𝐺(𝑁,𝑑)

(c)𝐺 (𝑁,𝑑)

2
3

4

5 67

8

1 9
10

(d) T1

2 6
4 7

5
8

2
1

9
10

(e) T2

Figure 5: (a) Flow-in-the-middle (FIM), (b) Fully-connected (FC), (c) Random geometric graph, and (d),(e) Samples of 𝐺 (10, 0.3).
Each node and edge represents {Sender (S), Receiver (R)} pair and interference, respectively.

different parameters. The “Conv” block represents the graph con-
volutional operation, with shared parameters same as the original
GCN paper [16]. The skip connection is adopted from the DenseNet
[13] structure, as it is a common practice for preserving the node
features in graph neural networks.
Random graph training. To train the GNN critic, we characterize
the wirelessMAC environment as a link interference graphwith a set
of 𝐿 links, represented by the adjacency matrix 𝐴 ∈ {0, 1}𝐿×𝐿 . An
example of the link interference graph is presented in Figure 5. The
dashed line represents the interference relationships between one-
hop ad-hoc links (A, B, and C in the figure). We aim to generalize our
MAC algorithm in a distribution of graphs P. For the generalization,
the training proceeds in the following steps. When every training
episode 𝑒 starts, the random graph 𝐴𝑒 ∼ P is randomly generated
from any possible graph distribution P and each agent executes
its current policy to collect the sample experiences. Then, we run
a single training iteration out of those samples. With sufficient
amount of random graph generation, we can expect the trained
policy would be functional on the interference graphs in P.

This method is particularly beneficial because it provides a gen-
eral design principle to train a protocol that works on a range of
different environments. With the aid of smart parameterized rep-
resentation of environments, we don’t have to re-train the model
every time when the environment changes. Considering that the
RL training process can be sometimes time-consuming, which can
take days or even weeks, this generalization technique enables us to
make the RL methodology to be practically applicable by training a
pseudo-universal policy that covers the spectrum of the environ-
ment configurations. Moreover, our approach is not bound to a
specific NN architecture as long as the critic can provide the gener-
alized representation over a set of environments. For example, one
can use a PointNet [30] architecture to embed a spatially distributed
wireless nodes instead of GNN.

3.5 Parameter-Shared Agents
The training parameters we use for the actors are shared across the
agents. This structure is selected to keep the number of parameters
in control even if we increase the number of agents significantly.
As the result, our algorithm is universally applicable to any agent
regardless of the agent index, making it a practical network pro-
tocol. Our GNN architecture also preserves the scale of parameter
size regardless of the number of agents. By sharing the parame-
ters, we can reduce the order of the model size from 𝑂 (𝑁) to 𝑂 (1),
where 𝑁 is the number of agents to train. By sharing the parame-
ters [10, 38], we do not have to consider the mapping relationship

when we apply our actors in different network environments. The
parameter-sharing operation is implemented as a centralized train-
ing process, and those controllers can be commonly deployed to
the wireless nodes for decentralized operations. Even if the parame-
ters are shared, different actions are taken because the observation
history of each agent is different. With the parameter sharing archi-
tecture, there could be slight disadvantages when we try to solve
in heterogeneous environment, e.g., HetNets or large diverse net-
working. However, here we are interested in a local ad-hoc wireless
network, where we can reasonably assume that the underlying
channel conditions are homogeneous.

4 EVALUATION
4.1 Implementation
We implemented the wireless MAC environment using the ns-3
simulator [31]. We use ns3-gym framework [8] to connect the C++-
based simulator and Python-based OpenAI Gym [2]. As depicted in
Figure 3, we make the same two-level queueing architecture as in
O-DCF [19]. This choice was made in order to assess a fair end-to-
end delay comparison, since the end-to-end frame delay is heavily
governed by the queueing structure of the networking stack. We
use and modify the PPO algorithm in RLlib [21] and implemented a
GNN-based multi-agent PPO algorithm for our use. Our source code
is uploaded in https://github.com/mununum/ns3-gym-csmarl,
along with O-DCF implementations for testing.

4.2 Experimental Setup
Network configuration.We tested ourMAC algorithmunder fixed
12 Mbps UDP traffic with 1500 B packets, along with 12 Mbps chan-
nel for saturated traffic environment. The RTS/CTS mechanism
is disabled since there is no hidden terminal problem in our wire-
less setting. All observational features are given to the sender by
observing the ACK frame and CCA indicators, and no other com-
munications are involved. We assume there is no path loss or fading
on wireless channels, and all packets are perfectly delivered when
no MAC frame collision occurs. We use a matrix propagation loss
model in ns-3, in which there is 0-dB loss in connected flows and
∞-dB loss in disconnected flows. We simulate our network for 20
seconds on each episode, and the monitoring interval is set to 5 ms.
Interference topology. We mainly focus on the three kinds of in-
terference topologies as follows:

• Flow-in-the-middle (FIM): Three flows with two outer
flows and one inner flow. The outer flows are only interfering
with one flow, but the inner flow interferes with two flows,

MobiHoc ’21, July 26–29, 2021, Shanghai, China Sangwoo Moon, Sumyeong Ahn, Kyunghwan Son, Jinwoo Park, and Yung Yi

802.11
O-DCF
Neuro-DCF-FIM
Neuro-DCF-G(10,0.3)

R
at

e
(M

bp
s)

0

5

10

Flow Index
1 2 3

802.11
O-DCF

Neuro-DCF-FC-6
Neuro-DCF-G(10,0.3)

R
at

e
(M

bp
s)

0

1

2

Flow Index
1 2 3 4 5 6

802.11
O-DCF

Neuro-DCF-T1
Neuro-DCF-G(10,0.3)

R
at

e
(M

bp
s)

0

2

4

Flow Index
1 2 3 4 5 6 7 8 9 10

O-DCF
Neuro-DCF-FIM
Neuro-DCF-G(10,0.3)

Q
ue

ue
 L

en
gt

h

0

100

200

300

Flow Index
1 2 3

(a) FIM

O-DCF
Neuro-DCF-FC-6
Neuro-DCF-G(10,0.3)

Q
ue

ue
 L

en
gt

h

0

200

400

600

Flow Index
1 2 3 4 5 6

(b) FC-6

O-DCF
Neuro-DCF-T1
Neuro-DCF-G(10,0.3)

Q
ue

ue
 L

en
gt

h

0

200

400

Flow Index
1 2 3 4 5 6 7 8 9 10

(c) T1

Figure 6: First and second row represent average rate and queue length with each topology: (a) FIM, (b) FC-6, and (c) T1.

hencemaking an asymmetric interference relationship which
makes a classical example where 802.11 algorithm suffers
from starvation.

• Fully-connected with size 𝑛 (FC-𝑛): All 𝑛 flows are inter-
fering with each other (Figure 5b). The FC topology has a
symmetric interference structure among flows.

• Random geometric graph with 𝑁 flows and 𝑑 thresh-
old (𝐺 (𝑁,𝑑)): 𝑁 flows are uniform randomly placed in 2-D
unit square, and only the flows within the threshold 𝑑 dis-
tance are connected (See Figure 5c for description). Figure
5d and 5e show example realizations of 𝐺 (10, 0.3). The posi-
tional representation of the graph is omitted for brevity.

FIM and FC topologies represent synthetic topologies, which are
simple toy environments yet entail important characteristics of
wireless channels. The random geometric graph emulates the spatial
placement of interfering wireless nodes, which makes more realistic
interference scenarios.

Training setup. In order to clarify our Neuro-DCF variants in
terms of training topology, we utilize following names which are;
(i) Neuro-DCF-T : Trained on single topology T only, e.g., we
call Neuro-DCF-FIM a model from FIM topology. (ii) Neuro-DCF-
𝐺 (𝑁,𝑑): Trained on various random geometric topologies which
are randomly sampled from 𝐺 (𝑁,𝑑). Note that different variants
are separate policy models trained on each topology. We inter-
changeably call Neuro-DCF-T asNeuro-DCF-single andNeuro-DCF-
𝐺 (𝑁,𝑑) as Neuro-DCF-general, since Neuro-DCF-single is solely
trained on a single dedicated topology, whereas Neuro-DCF-general
is obtained with our random graph training method.

For the evaluation of Neuro-DCF-general, we trained Neuro-
DCF-𝐺 (10, 0.3) by randomly sampling the graph from 𝐺 (10, 0.3)
every episode, and used this model in all topologies without re-
training. Neuro-DCF-single models are trained on each topology,
e.g., Neuro-DCF-FIM is trained only on the FIM topology instead
of randomized graph inputs. We set the EWMA weight 𝛼 to 0.9,
queue reward weight 𝛽 to 0.01, discount factor 𝛾 to 0.99, and used
decaying learning rate from 5 × 10−5 to 0. We use 20-core i9-9900X
with 3.50 GHz CPU with 128 GB RAM, and 2 TITAN Xp GPUs for
training Neuro-DCF-𝐺 (10, 0.3) algorithm. We compare our Neuro-
DCFs with two baselines, 802.11 and O-DCF. 802.11 is currently a
standardized MAC algorithm up to the latest WiFi 6, and O-DCF is
the implementation of optimal CSMA. A detailed description of the

hyper-parameters and neural network configuration is provided in
technical report [26].

4.3 Results
In this section, we present four-fold evaluation metrics with multi-
ple aspects: (i) Average throughput and queue length, (ii) Short-term
utility, (iii) Queue dynamics over time, and (iv) generalization per-
formance. Each result shows the average and 95% confidence value
of 5 randomly initialized models. Due to the space limitation, we
only provide the results on the FIM, FC-6, T1, and T2 topologies.
Additional results at each evaluation from variant topologies are
provided in technical report [26].

80
2.

11

O
-D

C
F

N
eu

ro
-D

C
F-

FI
M

N
eu

ro
-D

C
F-

G
(1

0,
0.

3)

To
ta

l U
til

ity

0

0.5

1.0

1.5

2.0

(a) FIM

80
2.

11

O
-D

C
F

N
eu

ro
-D

C
F-

FC
-6

N
eu

ro
-D

C
F-

G
(1

0,
0.

3)

To
ta

l U
til

ity

0

0.5

1.0

(b) FC-6

80
2.

11

O
-D

C
F

N
eu

ro
-D

C
F-

T1

N
eu

ro
-D

C
F-

G
(1

0,
0.

3)

To
ta

l U
til

ity

0

2

4

(c) T1

Figure 7: Total utility of each algorithm at each topology.

4.3.1 Throughput andQueue Length. Themain performancemetric
we evaluated is the average throughput and delay. The average
throughput measures the long-term behavior, such as efficiency
and fairness, of the MAC algorithm. We are particularly interested
in network utility, which is denoted as

∑
𝑖 𝑈 (𝑥𝑖) where 𝑥𝑖 is the

long-term rate of flow 𝑖 . Since the O-DCF algorithm is guaranteed
to achieve the optimal network utility, one of our objectives is to
get a comparable performance to O-DCF. The delay metric captures
the short-term behavior, where the class of optimal CSMA has a
particular weakness. We measure the delay by investigating the
average queue length, as measuring the raw end-to-end frame delay
can be sometimes misleading because of unsent frames. We did
not measure the average queue length of vanilla 802.11 because
the queue structure in a MAC layer is different from O-DCF and
Neuro-DCF, which makes the fair comparison impossible.

Figure 7 shows the total utility of MAC algorithms in each topol-
ogy. 802.11 has the lowest network utility in all environments.
O-DCF and all Neuro-DCF variants show a similar utility, except in
FC-6 scenario. This happens because FC-6 has a very harsh inter-
ference characteristics, and therefore the short-term estimation of
the throughput does not comply with the long-term throughput.

Neuro-DCF: Design of Wireless MAC via Multi-Agent Reinforcement Learning Approach MobiHoc ’21, July 26–29, 2021, Shanghai, China

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50
802.11
O-DCF
Neuro-DCF-FIM
Neuro-DCF-G(10,0.3)

Fl
ow

 2
 (M

bp
s)

0

2

4

6

8

Flow 1 (Mbps)
0 2 4 6 8

(a) Throughput

802.11
O-DCF
Neuro-DCF-FIM
Neuro-DCF-G(10,0.3)

Fr
eq
ue
nc
y

0

200

400

600

800

1000

−0.005 0

(b) Utility

Figure 8: Density map of short-term throughput and his-
togram of utility in FIM topology.

Neuro-DCF-𝐺 (10, 0.3) shows a better utility than Neuro-DCF-FC-6
because it can learn the general set of interference structures and
effectively find the better solution.

Upper row of Figure 6 shows the average per-flow throughput
in various interference topologies. In Figure 6(a), the inner flow is
largely starved under the legacy 802.11 DCF algorithm, whereas
both O-DCF and Neuro-DCF algorithm achieve the optimal channel
allocation. While the long-term utility of O-DCF and Neuro-DCF
show similar numbers, bottom row of Figure 6 shows that Neuro-
DCF has significantly better queueing performance than O-DCF
in all topologies. Neuro-DCF-𝐺 (10, 0.3) mostly shows slightly less
performance than the Neuro-DCF-single models, which can be
considered as the cost of generality.

4.3.2 Short-term Utility. Along with long-term throughput and
utility measurement, we also conduct an experiment to provide
statistics of the short-term throughput, showing how our MAC
algorithm works in more details. We collect the short-term through-
put and utility numbers by EWMA-estimation, same as (6). Figure
8a shows the two-dimensional histogram of channel allocation be-
tween different flows. As can be seen in the figure, the vanilla 802.11
algorithm sometimes fails to share the channel between different
flows. O-DCF and Neuro-DCF shares the similar long-term through-
put, but the short-term statistics are quite different. The histogram
of Neuro-DCF shows more concentrated measurement towards
the center which indicates that Neuro-DCF achieves more stable
scheduling compared to the fluctuating behavior of the O-DCF.

Figure 8b shows the histogram of short-term utility in various
network topologies. The short-term utility we use is derived from
(5), the EWMA-estimated short-term throughput. The Neuro-DCF
algorithms shows the most concentrated utility distribution com-
pared to 802.11 and O-DCF. This means that the short-term network
utility varies less in Neuro-DCF, which leads to more stabilized
scheduling behavior. Neuro-DCF-𝐺 (10, 0.3) shows slightly less con-
centrated statistics compared to the Neuro-DCF-single models be-
cause of the generalization.

0

0

0

10k 12k 14k

O-DCF

Neuro-DCF-FIM

Neuro-DCF-G(10,0.3)

(a) FIM topology

0

0

0

10k 12k 14k

O-DCF

Neuro-DCF-FC-6

Neuro-DCF-G(10,0.3)

(b) FC-6 topology

0

0

0

10k 12k 14k

O-DCF

Neuro-DCF-T2

Neuro-DCF-G(10,0.3)

(c) T2 Topology

Figure 9: Queue length deviation from 10k ms to 14k ms of
flow 1 of each topology.

4.3.3 Queue Dynamics over Time. We further characterize the in-
stantaneous behavior of the MAC algorithms by looking at the
queue length dynamics over time. The queue length of each flow
summarizes the arrival and service process of the scheduling dy-
namics. Optimal CSMA algorithms have been reported to have a
poor performance in terms of queueing dynamics despite being
optimal in the long-term.

Figure 9 depicts the queueing dynamics of O-DCF and Neuro-
DCF. As can be seen in the figure, there is a relatively large deviation
of the queue length in O-DCF and Neuro-DCF-𝐺 (10, 0.3), and the
Neuro-DCF-single models show almost zero deviation. Note that
Figure 9 only shows the deviation from the mean. The Neuro-DCF-
single models are trained on a single topology, so the policy does
not have to infer its surrounding interference structure. However, O-
DCF andNeuro-DCF-𝐺 (10, 0.3) have to collect some observations to
infer the wireless environment and control accordingly. This makes
slightly larger queue length deviations of both algorithms, but
Neuro-DCF achieves greatly reduced mean queue length compared
to O-DCF. In O-DCF, the sender has to wait the backlog to grow
sufficiently large in order to access the channel more aggressively.

0

0.5

1.0
Th

re
sh

ol
d

(d
)

0.1

0.5

1.0

of flows (N)
2 10 20

Reward gain

(a) Neuro-DCF-G(10,0.3)

0

0.5

1.0

Th
re

sh
ol

d
(d

)

0.1

0.5

1.0

of flows (N)
2 10 20

Reward gain

(b) Neuro-DCF-T2

Figure 10: (a) and (b) represent max-min normalized reward
gain of Neuro-DCF-𝐺 (10, 0.3) and Neuro-DCF-T2 compared
with O-DCF, respectively.4

4.3.4 Generalization. In this section we show the generalization
ability of Neuro-DCF training algorithm. So far, we have usedNeuro-
DCF-𝐺 (10, 0.3) to cover various topologies. Aside from synthetic
topologies like FIM or FC, the general topologies T1, T2 and T3
are all the instances of 𝐺 (10, 0.3), therefore we can say that we
verified the in-distribution generalization performance of Neuro-
DCF-𝐺 (10, 0.3). In this section, we measure the ability of Neuro-
DCF-𝐺 (10, 0.3) model on the topologies outside of G(10, 0.3), in
order to evaluate the out-distribution generalization performance of
Neuro-DCF-𝐺 (10, 0.3). To see this, we take the trained models and
tested them in graph topologies that lie in the (𝑁,𝑑) space of ran-
dom geometric graphs. In Figure 10, we plot the 10×10 grid heatmap,
where each patch of the grid represents the discretized space of 𝑁
and 𝑑 , namely 𝑁 ∈ {2, 4, · · · , 20} and 𝑑 ∈ {0.1, 0.2, · · · , 1.0}. Five
graph topologies are sampled from each configuration of (𝑁,𝑑), and
we also measure the performance of O-DCF in all settings to evalu-
ate the relative improvement of Neuro-DCF. Figure 10a shows the
generalization performance of Neuro-DCF-𝐺 (10, 0.3), and Figure
10b shows that of Neuro-DCF-T2. According to the figure, the ran-
dom graph trained algorithm Neuro-DCF-𝐺 (10, 0.3) outperforms
the Neuro-DCF-single model by showing more improvements in
wider span of (𝑁,𝑑) surface.
4The max-min normalized gain denotes the normalized difference of the reward in
Neuro-DCF and in O-DCF. The maximal difference becomes 1, the minimal becomes 0,
and the difference value is linearly scaled accordingly.

MobiHoc ’21, July 26–29, 2021, Shanghai, China Sangwoo Moon, Sumyeong Ahn, Kyunghwan Son, Jinwoo Park, and Yung Yi

5 CONCLUSION
In this paper, we introduced a cooperative MARL approach for
addressing the wireless scheduling problem. The wireless MAC
has been researched for decades, but the current state-of-the-art
algorithms cannot be said to have achieved optimality. Our main
objective is to present a learning-based approach for training an
efficient wireless MAC controller. With our approach, the delay is
minimized compared to the optimal CSMA while preserving the
optimality in throughput and fairness. We utilized the modified
version of the PPO algorithm for stable and efficient training, and
we proposed the novel GNN-based critic architecture to train a
generalized MAC algorithm to achieve optimal utility and minimal
delay. The new paradigm of experience-driven engineering has
therefore shown great possibilities by this demonstration, and we
hope to stimulate the research community to practice this discipline
and further improve the efficiency of wireless networking.

ACKNOWLEDGMENTS
This work was supported by BK21 FOUR project of the National Re-
search Foundation of Korea Grant. The authors would like to thank
Roben D. Delos Reyes for constructive criticism of the manuscript.

REFERENCES
[1] Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. 2020. Deep coordination

graphs. In Proc. of ICML.
[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym.
arXiv:arXiv:1606.01540

[3] Frederico Calì, Marco Conti, and Enrico Gregori. 2000. Dynamic tuning of
the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM
Transactions on networking 8, 6 (2000), 785–799.

[4] Ursula Challita, Li Dong, and Walid Saad. 2018. Proactive Resource Management
for LTE in Unlicensed Spectrum: A Deep Learning Perspective. IEEE transactions
on wireless communications 17, 7 (2018), 4674–4689.

[5] Sandeep Chinchali, Pan Hu, Tianshu Chu, Manu Sharma, Manu Bansal, Rakesh
Misra, Marco Pavone, and Sachin Katti. 2018. Cellular Network Traffic Scheduling
with Deep Reinforcement Learning. In Proc. of AAAI.

[6] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,
Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. 2015. Convolutional
networks on graphs for learning molecular fingerprints. In Proc. of NeurIPS.

[7] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and
Shimon Whiteson. 2018. Counterfactual multi-agent policy gradients. In Proc. of
AAAI.

[8] Piotr Gawłowicz and Anatolij Zubow. 2019. ns-3 Meets OpenAI Gym: The
Playground for Machine Learning in Networking Research. In Proc. of MSWiM.

[9] Yan Grunenberger, Martin Heusse, Franck Rousseau, and Andrzej Duda. 2007.
Experience with an implementation of the Idle Sense wireless access method. In
Proc. of ACM CoNEXT.

[10] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. 2017. Cooperative
multi-agent control using deep reinforcement learning. In Proc. of AAMAS.

[11] Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and Enrique Munoz de
Cote. 2017. A survey of learning in multiagent environments: Dealing with
non-stationarity. arXiv preprint arXiv:1707.09183 (2017).

[12] Martin Heusse, Franck Rousseau, Romaric Guillier, and Andrzej Duda. 2005. Idle
sense: an optimal access method for high throughput and fairness in rate diverse
wireless LANs. In Proc. of SIGCOMM.

[13] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely connected convolutional networks. In Proc. of CVPR.

[14] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv Tamar.
2019. A Deep Reinforcement Learning Perspective on Internet Congestion Con-
trol. In Proc. of ICML.

[15] Libin Jiang and Jean Walrand. 2009. A distributed CSMA algorithm for through-
put and utility maximization in wireless networks. IEEE/ACM Transactions on
Networking 18, 3 (2009), 960–972.

[16] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proc. of ICLR.

[17] Jaewook Kwak, Chul-Ho Lee, and Do Young Eun. 2013. Exploiting the past to
reduce delay in CSMA scheduling: A high-order Markov chain approach. ACM

SIGMETRICS Performance Evaluation Review 41, 1 (2013), 353–354.
[18] Hojin Lee, SangwooMoon, and Yung Yi. 2015. A-DCF: Design and implementation

of delay and queue length based wireless MAC. In Proc. of INFOCOM.
[19] Jinsung Lee, Hojin Lee, Yung Yi, Song Chong, Edward W Knightly, and Mung

Chiang. 2015. Making 802.11 DCF Near-Optimal: Design, Implementation, and
Evaluation. IEEE/ACM Transactions on Networking 24, 3 (2015), 1745–1758.

[20] Husheng Li. 2010. Multiagent Q-Learning for Aloha-Like Spectrum Access in
Cognitive Radio Systems. EURASIP Journal on Wireless Communications and
Networking 2010 (2010), 1–15.

[21] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Gold-
berg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. 2018. RLlib: Abstractions
for Distributed Reinforcement Learning. In Proc. of ICML.

[22] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control with
deep reinforcement learning. In Proc. of ICLR.

[23] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor
Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-competitive
environments. In Proc. of NeurIPS.

[24] Nicholas Mastronarde, Jalil Modares, Changcan Wu, and Jacob Chakareski. 2016.
Reinforcement Learning for Energy-Efficient Delay-Sensitive CSMA/CA Sched-
uling. In Proc. of GLOBECOM.

[25] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
nature 518, 7540 (2015), 529–533.

[26] Sangwoo Moon, Sumyeong Ahn, Kyunghwan Son, Jinwoo Park, and Yung Yi.
2020. Neuro-DCF: Design of Wireless MAC via Multi-Agent Reinforcement Learning
Approach. Technical Report. http://lanada.kaist.ac.kr/neuro-dcf/neuro-dcf-tech-
report.pdf

[27] Navid Naderializadeh, Fan H Hung, Sean Soleyman, and Deepak Khosla. 2020.
Graph Convolutional Value Decomposition in Multi-Agent Reinforcement Learn-
ing. arXiv preprint arXiv:2010.04740 (2020).

[28] Oshri Naparstek and Kobi Cohen. 2018. Deep Multi-User Reinforcement Learn-
ing for Distributed Dynamic Spectrum Access. IEEE Transactions on Wireless
Communications 18, 1 (2018), 310–323.

[29] Frans A Oliehoek, Christopher Amato, et al. 2016. A concise introduction to
decentralized POMDPs. Vol. 1. Springer.

[30] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017. Pointnet: Deep
learning on point sets for 3d classification and segmentation. In Proc. of CVPR.

[31] George F Riley and Thomas R Henderson. 2010. The ns-3 Network Simulator. In
Modeling and tools for network simulation. Springer, 15–34.

[32] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
2016. High-dimensional continuous control using generalized advantage estima-
tion. In Proc. of ICLR.

[33] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[34] Vasilios A Siris and George Stamatakis. 2006. Optimal CWmin selection for
achieving proportional fairness in multi-rate 802.11 e WLANs: test-bed imple-
mentation and evaluation. In Proc. of WiNTECH.

[35] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[36] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 1999.
Policy gradient methods for reinforcement learning with function approximation.
In Proc. of NeurIPS.

[37] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Kor-
jus, Juhan Aru, Jaan Aru, and Raul Vicente. 2017. Multiagent cooperation and
competition with deep reinforcement learning. PloS one 12, 4 (2017), e0172395.

[38] Justin K Terry, Nathaniel Grammel, Ananth Hari, Luis Santos, Benjamin Black,
and Dinesh Manocha. 2020. Parameter Sharing is Surprisingly Useful for Multi-
Agent Deep Reinforcement Learning. arXiv preprint arXiv:2005.13625 (2020).

[39] Nelson Vithayathil Varghese andQusayHMahmoud. 2020. A survey ofmulti-task
deep reinforcement learning. Electronics 9, 9 (2020), 1363.

[40] Shangxing Wang, Hanpeng Liu, Pedro Henrique Gomes, and Bhaskar Krishna-
machari. 2018. Deep Reinforcement Learning for Dynamic Multichannel Access
in Wireless Networks. IEEE Transactions on Cognitive Communications and
Networking 4, 2 (2018), 257–265.

[41] Ajit Warrier, Sankararaman Janakiraman, Sangtae Ha, and Injong Rhee. 2009.
DiffQ: Practical differential backlog congestion control for wireless networks. In
Proc. of INFOCOM.

[42] Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M Bayen,
Sham Kakade, Igor Mordatch, and Pieter Abbeel. 2018. Variance reduction for
policy gradient with action-dependent factorized baselines. In Proc. of ICLR.

[43] Zhiyuan Xu, Jian Tang, Jingsong Meng, Weiyi Zhang, Yanzhi Wang, Chi Harold
Liu, andDejun Yang. 2018. Experience-drivenNetworking: ADeep Reinforcement
Learning based Approach. In Proc. of INFOCOM.

[44] Se-Young Yun, Yung Yi, Jinwoo Shin, and Do Young Eun. 2012. Optimal CSMA:
A Survey. In Proc. of ICCS.

http://arxiv.org/abs/arXiv:1606.01540
http://lanada.kaist.ac.kr/neuro-dcf/neuro-dcf-tech-report.pdf
http://lanada.kaist.ac.kr/neuro-dcf/neuro-dcf-tech-report.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Reinforcement Learning (DRL)
	2.2 Multi-agent RL

	3 Design of Neuro-DCF
	3.1 Overall Training Structure
	3.2 Observations, Actions, and Rewards
	3.3 Multi-Agent Proximal Policy Optimization (MAPPO)
	3.4 Graph Embedding Critic
	3.5 Parameter-Shared Agents

	4 Evaluation
	4.1 Implementation
	4.2 Experimental Setup
	4.3 Results

	5 Conclusion
	Acknowledgments
	References

