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Abstract—We study the problem of unsupervised domain
adaptation that aims at obtaining a prediction model for the
target domain using labeled data from the source domain and
unlabeled data from the target domain. There exists an array
of recent research based on the idea of extracting features that
are not only invariant for both domains but also provide high
discriminative power for the target domain. In this paper, we
propose an idea of improving the discriminativeness: Adding
an extra artificial class and training the model on the given
data together with the GAN-generated samples of the new
class. The trained model based on the new class samples is
capable of extracting the features that are more discriminative
by repositioning data of current classes in the target domain and
therefore increasing the distances among the target clusters in the
feature space. Our idea is highly generic so that it is compatible
with many existing methods such as DANN, VADA, and DIRT-T.
We conduct various experiments for the standard data commonly
used for the evaluation of unsupervised domain adaptations and
demonstrate that our algorithm achieves the SOTA performance
for many scenarios.

I. INTRODUCTION

Deep neural networks have recently been used as a major
way of achieving superb performance on various machine
learning tasks, e.g., image classification [1], image generation
[2], and speech recognition [3], just to name a few. However,
it still leaves much to be desired when a network trained on
a dataset from a specific data source is used for dataset from
another data source. This domain shift and thus distribution
mismatch frequently occurs in practice, and has been studied
in the area of domain adaptation. The crucial ingredient in
domain adaptation lies in transferring the knowledge from the
source domain to the model used in the target domain.

In this paper, we consider the classification problem of
unsupervised domain adaptation, where the trained model has
no access to any label from the target domain. What a good
domain adapation model has to have is two-fold. First, it is
able to extract domain-invariant features that are present in
both source and target domains, thereby aligning the feature
space distributions between two different domains, e.g., [4],
[5], [6], [7], [8], [9], [10]. Second, it has to have high dis-
criminative power for the target domain task, which becomes
possible by smartly mixing the following two operations: (i)
extracting task-specific, discriminative features [11], [12], [13]
and (ii) calibrating the extracted feature space so as to have
a clearer separation among classes, e.g., moving the decision
boundaries [14] (see Section II for more details).
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Fig. 1: Illustration on how GADA works. Each arrow in the feature
space corresponds to the force that moves the extracted features
or tweaks the decision boundary. (a) Domain-invariant features are
learned by dragging source samples and target samples to each other
in the feature space. (b) Discriminative features are extracted by
classifying out-of-class (OOC) samples into the extra class (K+1)th,
which creates an OOC cluster in-between the real clusters. This OOC
cluster increases the distance between real clusters, thereby improving
the quality of the extracted features in terms of discriminativeness.

Despite recent advances in unsupervised domain adaptation,
there still exists non-negligible performance gap between
domain adapted classifiers and fully-supervised classifiers,
hinting a room for further improvement. In this paper, we
focus on the second part of empowering the predictive model
with more discriminativeness, whose key idea is as follows:
Assuming that there are K classes in the target data, we equip
the model with an extra (K + 1)th class. This extra class is
constructed so as to contain the target-like samples, which we
call out-of-class (OOC) samples throughout this paper, that
fail to belong to any of K classes. Feeding such OOC samples
and classifying them into its own (K + 1)th class create an
OOC cluster in-between the real clusters, thereby increasing
the distances among these real clusters and improving the
extraction power in terms of discrimination. Figure 1 illustrates
our idea, where to obtain the OOC samples, we train a
generator based on a feature matching GAN [15]. We call
our idea Generative Adversarial Domain Adaptation (GADA).

The power of an extra class has already been verified in the
area of semi-supervised learning [15], [16], [17]. Our contri-
bution is to utilize this idea in conjunction with a combination
of different objective functions and techniques to unsupervised
domain adaptation problem to achieve higher performance. To
the best of our knowledge, this paper is the first to successfully
integrate the idea of adding an extra class with unsupervised



(a) DANN [9] (74.9%) (b) GADA* (99.0%)

Fig. 2: Feature space comparison for the domain adaptation task
SVHN → MNIST. The number in parenthesis corresponds to the
classification accuracy.

domain adaptation. We comment that, compared to the case
of semi-supervised learning, it is necessary to learn both the
domain-invariant and the discriminative features, requiring
to strike a good balance between those two for successful
adaptation.

We highlight that our method is highly generic so as to be
compatible with many existing methods. Figure 2 shows the
feature space illustration, demonstrating the power of GADA
when used together with the notorious method DANN [9].
As Figure 2 shows, we achieve a significant improvement in
terms of accuracy and separability among the classes. We also
show our integration power with two recent methods, VADA
and DIRT-T [14], which improve the model’s discriminative
power. VADA aims to extract better discriminative features by
employing smart loss functions in training, whereas DIRT-T
refines the decision boundary for given extracted features. As
shown later in Section IV, we achieve the best performance in
the most difficult task MNIST → SVHN after the integration.
This implies that (i) simply adding a new, fictitious class and
training with generated samples as in GADA outperforms the
VADA algorithm, and (ii) our idea is significantly synergic
with a refining-based method DIRT-T.

We empirically prove the effects of our method by carrying
out an extensive set of experiments where we observe that
our method outperforms all other state-of-the-art methods in
five among six standard domain adaptation tasks in different
scenarios. Although the task SVHN → MNIST had a very
high accuracy achieved by the existing methods, GADA is
demonstrated to surpass all of them. As for MNIST→ SVHN,
which is known to be extremely challenging, our algorithm
yields an improvement of 13% in terms of accuracy over
VADA, setting a new state-of-the-art benchmark.

II. RELATED WORK

Extracing domain-invariant features A collection of works
[4], [5], [6], [7] aimed at aligning the feature space distri-
butions of the source and target domains by minimizing the
statistical discrepancy between their two distributions using
different metrics. In [4], [5], maximum mean discrepancy
(MMD) was used to align the high layer feature space. In
[6], Joint MMD (JMMD) was used by defining the distance
between the joint distributions of feature space for each layer
one by one. In [7], the covariances of feature space were

used as the discrepancy to be minimized. Different approaches
include [8] and [18]. The authors in [18] proposed a method
of minimizing the regularization loss between the source
and target feature network parameters so as to have similar
feature embeddings. DANN [8] used a domain adversarial
neural network, where the feature extractor is trained to
generate domain-invariant features using a gradient reversal
layer, which inverses the sign of gradients from a domain
discriminator.

Improving discriminativeness The idea in DANN has been
used as a key component in many subsequent studies [11],
[12], [14], [13], which essentially modified the adversarial
training architecture to acquire more discriminative power.
Different from the end-to-end training in DANN, ADDA
(Adversarial Discriminative Domain Adaptation) [11] divided
the training into two stages: (a) normal supervised learning
on a feature extractor and a feature classifier on the source
domain, and (b) training the target domain’s feature extractor
to output the features similar to the source domain’s. In [12], a
semantic loss function is used to measure the distance between
the centroids of the same class from different domains. Then,
minimizing the semantic loss function ensures that the features
in the same class from different domains will be mapped
nearby. VADA (Virtual Adversarial Domain Adaptation) [14]
add two loss functions to DANN to move the decision
boundaries to low-density regions. DIRT-T [14] solves the
non-conservative domain adaptation problem by applying an
additional refinement process to the model trained by VADA.

We summarize another array of work designed for improv-
ing discriminativeness. Tri-training method [19] used high-
quality pseudo-labeled samples to train an exclusive classifier
for the target domains via ensemble neural networks. Co-
regularized Domain Adaptation (CoDA) [13] increases the
search space by introducing multiple feature embeddings using
multiple networks, aligning the target distribution into each
space and co-regularizing them to make the networks agree on
their predictions. In Generative Adversarial Guided Learning
(GAGL) [20], the authors used a generator trained with Central
Moment Discrepancy (CMD) [21], similar to what we propose
in this paper, in order to boost the classifier performance.
However, their experiment results are far from the state-of-
the-art performance.

Pixel-level approach We have focused on the feature-level
domain adaptation. There exist pixel-level approaches: In [22],
the authors proposed to adapt the two domains in the pixel
level. The works in [23] and [24] used Cycle GAN [25] to
perform the pixel-level adaptation and integrate it with the
feature-level domain adaptation in the same model to extract
better domain-invariant features.

Bad GAN The idea of using a (K+1)th output to improve the
model performance was widely used in the semi-supervised
learning problem [15], [16], [17]. The work in [15] was the
first that introduces the (K + 1)th output and apply it to
the semi-supervised learning problems. Bad GAN [16] first
theoretically and empirically proved the effectiveness of a
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Fig. 3: Network architecture of GADA. Colored solid lines show the
flows of source, target and generated data. Six different loss functions
are used: (i) Ld updates θD and θg for domain-invariance; (ii) Lc,
Lu, Le, and Lv update θg and θh to extract discriminative features,
and (iii) Lg updates the generator parameters θG. The red arrows
show the positions where the losses are computed.

bad generator in helping the classifier to learn, and then
designed several loss functions as an attempt to generate bad
samples. While the additional output proved its effects in
semi-supervised learning, we utilize it in conjunction with
other techniques to solve the problem of unsupervised domain
adaptation in this paper. Note that in the semi-supervised
learning setting, there is only one domain involved in the
problem, and the given labels have the same domain as
the target data’s. Therefore, the model only needs to learn
to discriminate input features for high performance. In the
domain adaptation problem, the given labels are from the
source domain, while target dataset is from the target domain.
This domain shift makes the problem more difficult, as the
model needs to achieve a good balance between extracting
domain-invariant features and discriminative features.

III. METHOD

A. Unsupervised Domain Adaptation

The problem of unsupervised domain adaptation is formu-
lated as follows. We are given the source dataset with labels
(XS ,YS) from the source domain DS and the target dataset
XT from the target domain DT , but the target data has no
labels. A domain shift between the two domains is assumed,
i.e., DS 6= DT . The ultimate goal of unsupervised domain
adaptation is to learn a good inference function on the target
domain f : XT → YT using the labeled source data (XS ,YS)
and the unlabeled target data XT .

B. GADA

In this section, we present our method, called GADA
(Generative Adversarial Domain Adaptation), ranging from
the overall network architecture to the detailed algorithm
description.

1) Network Structure: We illustrate the network structure of
GADA in Figure 3, which consists of four major components
C1-C4 as follows:
C1. a feature extractor g with parameters θg
C2. a feature classifier h with parameters θh

C3. a domain discriminator D with parameters θD
C4. a generator G with parameters θG

The feature extractor g extracts the common features of the
source and target inputs, while the feature classifier h classifies
the extracted features from g and outputs the classification
scores. The domain discriminator D has binary output indicat-
ing whether an input is from the source domain or the target
domain. The generator G generates the out-of-class (OOC)
samples which differs from the target data distribution.

The (K + 1)th class is added to the output layer of the
main network f = h ◦ g, whose parameter is denoted by
θ = (θg, θh). f becomes a discriminator to train G, while
the extra class becomes the fake class to contain the OOC
samples. The classifier f must distinguish the real and the
generated OOC samples to improve discriminative power. As
mentioned in the introduction (Figure 1), separating real and
OOC samples will create an OOC cluster in-between the real
clusters, which increases the distances among the real clusters,
thereby improving the discriminative quality of the features.
OOC samples include target-like samples resembling many
classes, so the OOC cluster should be placed at the position
near the real clusters with similar distances to all of them in
the feature space. Therefore, the OOC cluster will be placed
in-between the real clusters instead of being dragged far away.
Remarks In terms of network structure, there are two
differences from DANN [9]: (i) the generator G and (ii) the
additional (K + 1)th class output. In addition, our method is
generic so it can be used with many other approaches, such
as VADA and DIRT-T [14], as long as they have their own
method of extracting domain-invariant features.

In the remainder of this section, we elaborate GADA by
separately presenting the parts that contribute to the extraction
of domain-invariant and discriminative features, followed by
the whole algorithm description.

2) Domain-invariance via adversarial training: In this sub-
section, we describe the part of GADA which extracts the
features that are invariant for both domains. This job involves
the following three components: (C1) feature extractor g, (C2)
feature classifier h and (C3) domain discriminator D, where
domain-invariant features are extracted by adversarial training.
The key idea is that if we are able to fool a smart discriminator
D, i.e., leading D to fail to distinguish the input domains, the
extracted features g(X) turn out to be domain-invariant.

The loss functions1 used to train the model are given by:

Lc(θ;DS) = Ex,y∼DS
[logPθ(ŷ = y|x, y ≤ K)] , (1)

Ld(θg, θD;DS ,DT ) = Ex∼XS
[logD(g(x))]

+ Ex∼XT
[log(1−D(g(x)))] , (2)

where ŷ indicates the prediction of the network, Ld is the
cross-entropy for the domain discriminator, and Lc is the
negative cross-entropy for the main task.

We note that this is similar to the adversarial training in
DANN [9], which we also inherit in GADA, as done by

1In this paper, we use the notation Lx(θy ;Dz) for all loss functions to mean
that the loss Lx uses samples from domain Dz to update the parameters θy .



other related work [11], [12], [14], [13]. The difference is
that we replace the gradient reversal layer by an alternating
minimization method, which is known to be probably more
stable [14]. This alternating training scheme is referred to as
Domain Adversarial Training, and is performed as follows:

max
θ

min
θD

[
Lc(θ;DS) + λdLd(θg, θD;XS ,XT )

]
, (3)

where λd is the weight of domain discriminator loss Ld.
However, the domain discriminator does not consider the class
labels while being trained, so the extracted features are not
ensured to have sufficient classification capability. Therefore,
more optimizations are necessary to extract discriminative
features, thereby boosting the performance, which is the key
contribution of this paper, as presented in the next section.

3) Discriminativeness by adding an extra class: We now
present how we improve the power of discriminativeness in
GADA. The three components are associated with this process:
(C1) feature extractor g, (C2) feature classifier h, and (C4)
generator G (see Figure 3).

Adding extra class and out-of-class generator As presented
previously, an out-of-class (OOC) generator generates the sam-
ples whose distribution differs from the target data distribution,
which provides the power of extracting discriminative features
from both domains. In addition, the classifier f must be able
to distinguish between the real and generated samples to have
better performance, where when real and OOC samples are
separated, the distance between the clusters of real samples
are increased, thereby improving the discriminative quality of
the features.

In order to help the classifier to distinguish the real and OOC
samples, we introduce an unsupervised objective function as
follows:

Lu(θ;XT ,Pz) = Ex∼XT
[logPθ(ŷ ≤ K|x)]

+ Ez∼Pz [logPθ(ŷ = K + 1|G(z))] , (4)

where Pz is a random noise distribution from which the noise
vector z comes. The function Lu has two terms: (i) the first
term is used to train the network with the unlabeled target
data, and (ii) the second term is to train the network with the
generated samples. By maximizing the first term, we maximize
the probability that an unlabeled target sample belongs to one
of the first K classes. By maximizing the second term, we
maximize the probability that a generated sample belongs to
the fictitious (K + 1)th class.

In addition to the objective function used in training the
discriminator, we need a loss function to train the OOC
generator. In [16], the authors claim that a complementary
generator, which generates no in-indistribution samples, is
essential to improve the performance. They proposed a bad
generator (BadGAN) as an attempt to mimic the comple-
mentary generator, but it is too costly to be implemented. In
our model, we use an imperfect complementary generator to
reduce the implementation complexity using Feature Matching
(FM) objective [15]. Using only FM objective function puts

less constraints to the generator compared to BadGAN. The
function is defined as follows:

Lg(θG;XT , Pz) =
‖Ex∼XT

[φ(x)]− Ez∼Pz
[φ(G(z))]‖ , (5)

where φ is an immediate layer in the network. In our im-
plementation, we choose φ to be the last hidden layer of
the feature classifier h. FM matches the statistics (in this
case, the mean) of each minibatch, which leads to a less
constrained loss function that helps the generator to generate
OOC samples [15], [16]. Note that we apply (5) to generate
the target domain samples only, because the source samples
are provided with the labels, which are more adequate for
training. In addition, training the network with the generated
source samples might hurt the performance because of non-
conservativeness of domain adaptation [14] considered in this
paper.

Entropy minimization and virtual adversarial training
(VAT) We also minimize the entropy of the model’s output
in order to make the model more confident about its prediction
using the following objective:

Le(θ;DT ) = −Ex∼DT

[
f(x)> ln f(x)

]
. (6)

This loss function prevents the target data from being located
near the decision boundary, or in other words, places the
decision boundary in the low-density area. In fact, our extra
class method boosts the effect of this loss function. Our
method increases the distances between the real clusters, which
creates more low-density areas for the decision boundary to
pass through. Therefore, a solution to minimize (6) can be
found easier.

Adversarial training has been proposed to increase the
robustness of the classifier to the adversarial attack which
intentionally perturbes samples to degrade the prediction accu-
racy. Virtual Adversarial Training (VAT) was proposed for the
same purpose: it ensures consistent predictions for all samples
that are slightly perturbed from the original sample, where the
following loss function is used:

Lv(θ;D) = Ex∼D
[
max
‖r‖≤ε

DKL(f(x) ‖ f(x+ r))

]
. (7)

This loss regularizes the classifier so that it does not change
its prediction abruptly due to the perturbation of inputs, which
helps to learn a robust classifier. Note that entropy minimiza-
tion and VAT are popularly used in domain adaptation, as
in [13] and [14].

Aggregation To extract the discriminative features, using
the loss functions introduced earlier, we perform alternating
optimization between the following two:

max
θ
Lc(θ;DS) + λuLu(θ;XT , Pz) + λsLv(θ;DS)

+ λt [Lv(θ;DT ) + Le(θ;DT )] ,
min
θG
Lg(θG;XT , Pz),



Algorithm 1 GADA
The following three steps are sequentially repeated until con-
vergence.
S1. Update the classifier. Sample M source samples with

the corresponding labels (xS , yS), M unlabeled target
samples xT , and M random noise vectors z, to update
the feature extractor g and the feature classifier h:

max
θ
Lc(θ;DS) + λdLd(θg, θD;XS ,XT )

+ λuLu(θ;XT , Pz) + λsLv(θ;DS)
+ λt [Lv(θ;DT ) + Le(θ;DT )] .

S2. Update the domain discriminator. Sample M source
samples xS and M target samples xT to update the
domain discriminator D by minimizing Ld:

min
θD
Ld(θg, θD;XS ,XT ).

S3. Update the generator. Sample M random noise vectors
z and M target samples xT , update the generator G by
minimizing Lg:

min
θG
Lg(θG;XT , Pz).

where Lc is the negative cross-entropy function defined in (1),
while λu, λs, and λt are the hyperparameters to control the
impact of each loss function. Note that the VAT objective
function is applied to both the source and target domains, as
suggested by [14].

4) GADA Algorithm: Combining the contents in the previ-
ous two subsections, GADA solves the following optimization
in training based on the network structure in Figure 3:

max
θ

min
θD

min
θG
Lc(θ;DS)︸ ︷︷ ︸

(a)

+λdLd(θg, θD;XS ,XT )︸ ︷︷ ︸
(b)

+ λsLv(θ;DS) + λt [Lv(θ;DT ) + Le(θ;DT )]︸ ︷︷ ︸
(c)

+ λuLu(θ;XT , Pz) + Lg(θG;XT , Pz)︸ ︷︷ ︸
(c)

. (8)

The above function is interpreted as follows. Maximizing
(a) guides the network to achieve the classification power
from the source data and labels. Updating θD to minimize
(b), while updating θg to maximize it, helps the network
to extract domain-invariant features. (c) improves discrimi-
nativeness by generating OOC samples and classifying them
into the fictitious class K + 1, as well as regularizing the
model with entropy minimization and VAT objective. The
complete training algorithm is presented in Algorithm 1. Since
the algorithm monotonically decreases the objective function
value, the convergence is guaranteed.

IV. EXPERIMENTAL RESULTS

A. Baselines and Domain Adaptation Tasks

We mostly compare our algorithm GADA against the
two recent state-of-the-art methods, VADA+DIRT-T [14] and
CoDA [13]. We also include other strong algorithms as the
baselines, such as DSN [10], ATT [19], MCD [26], DA
Assoc. [27], and GAGL [20]. We evaluate the algorithms
with the standard datasets, which include four digit datasets
(MNIST, SVHN, MNIST-M, and SynthDigits) and two object
datasets (CIFAR-10 and STL-10).
MNIST ↔ SVHN Both MNIST and SVHN are digit data
sets different in style. MNIST consists of gray-scale hand-
written images, while SVHN includes images of RGB house
numbers. Due to the lower input dimension in MNIST, we
upscale MNIST images to have the same dimension as SVHN
with three same color channels. The task MNIST → SVHN
is known to be highly challenging. We observe that this task
has been omitted in many related papers, possibly due to the
adaptation hardness. The task of the opposite direction SVHN
→ MNIST is relatively easy, because the classifier is trained
with the labels from SVHN, the more complex source domain.
MNIST→MNIST-M MNIST-M is constructed by blending
the gray-scale MNIST images with colored backgrounds in
BSDS500 dataset [28]. The resulting color images in MNIST-
M increase the domain shift between the two datasets, thus
this adaptation task has been widely used to compare the
performance of various models [9], [10], [19], [14], [13].
SynthDigits (DIGITS) → SVHN SynthDigits is a synthetic
digit dataset consisting of 500,000 images generated from
Windows fonts by varying the text, positioning, orientation,
background, stroke color, and the amount of blur. This task
reflects a common adaptation task from synthetic images
(synthesized images) to real images (house number pictures).
CIFAR-10↔ STL-10 Both CIFAR-10 and STL-10 are RGB
object images, each with 10 different classes. We remove the
non-overlapping classes in each data set (frog in CIFAR-10 and
monkey in STL-10) and perform the training and evaluation on
the 9 leftover classes. Because of the difference in dimensions,
we downscale all STL images to match the dimension of
CIFAR-10’s. Since CIFAR-10 has more labeled data than STL-
10, it is easier to adapt from CIFAR-10 to STL-10 than the
opposite direction.

B. Implementation Details

Network architecture We use a small convolutional neural
network (CNN) for the digit datasets, and a larger one for
the object datasets. We apply batch normalization to all
fully-connected and CNN layers, while dropout and additive
Gaussian noise are used in several layers. As for the generator,
we use transposed convolution layers to upsample the feature
maps.
Hyperparameters In all the experiments, we train the
network using Adam Optimizer. Following Shu et al. [14],
we randomly select 1000 labeled target samples to do a grid



TABLE I: Comparison of state-of-the-art methods in terms of classification accuracy (%). Values in bold indicate the best result. To see
the performance of Lu + Lg of GADA versus Le + Lv of VADA, we include the results of GADA*, a model trained with λs = λt = 0.

Source MNIST SVHN MNIST DIGITS CIFAR STL
Target SVHN MNIST MNIST-M SVHN STL CIFAR

DANN[8] 35.7 71.1 81.5 90.3 - -
DSN[10] - 82.7 83.2 91.2 - -
ATT[19] 52.8 86.2 94.2 92.9 - -
MCD[26] - 96.2 - - - -

DA Assoc.[27] - 97.6 89.5 91.9 - -
GAGL[20] 74.6 96.7 94.9 93.1 77.0 61.5

Without instance-normalized input
VADA[14] 47.5 97.9 97.7 94.8 80.0 73.5
CoDA[13] 55.3 98.8 99.0 96.1 81.4 76.4

GADA* (ours) 69.9 98.2 98.2 94.9 79.7 73.0
GADA (ours) 72.3 98.9 99.1 95.7 80.5 75.1

VADA+DIRT-T[14] 54.5 99.4 98.9 96.1 - 75.3
CoDA+DIRT-T[13] 63.0 99.4 99.1 96.5 - 77.6

GADA*+DIRT-T (ours) 82.4 99.4 98.9 96.3 - 75.3
GADA+DIRT-T (ours) 83.7 99.6 99.3 96.6 - 76.5

With instance-normalized input
VADA[14] 73.3 94.5 95.7 94.9 78.3 71.4
CoDA[13] 81.7 98.7 98.0 96.0 80.6 74.7

GADA* (ours) 78.7 99.0 97.2 95.3 78.9 72.1
GADA (ours) 83.6 98.8 98.2 96.1 80.1 74.9

VADA+DIRT-T[14] 76.5 99.4 98.7 96.2 - 73.3
CoDA+DIRT-T[13] 88.0 99.4 98.8 96.5 - 75.9

GADA*+DIRT-T (ours) 84.5 99.4 98.8 96.5 - 74.7
GADA+DIRT-T (ours) 90.0 99.6 99.0 96.8 - 76.2

(a) Original MNIST images (b) Generated MNIST images (c) Original SVHN images (d) Generated SVHN images

Fig. 4: Comparison between original and generated images in the tasks SVHN → MNIST (Figures (a) and (b)) and MNIST → SVHN
(Figures (c) and (d)). Bad samples of images are generated after training.

search of hyperparameter, with the learning rate restricted to
{2×10−4, 10−3}, while λd is either 10−2 or 0. We also restrict
other hyperparameters to λs = {0, 1}, λt = {10−1, 10−2} and
λu = {10−1, 10−2}.

Instance normalization As suggested in [14], we apply
the instance normalization to the rescaled input images. This
procedure renders the classifier invariant to channel-wide shifts
and rescaling of pixel intensities. The results for using and
non-using instance normalization are both presented.

DIRT-T integration For a fair comparison with VADA and
CoDA, after training a model using GADA, we refine it using
DIRT-T[14], which proves to be effective in improving the
performance. In all the experiments, we refine the model with
β = 10−2, except for STL-10 → CIFAR-10, where β is set
to 10−1. Note that we do not apply DIRT-T to CIFAR-10 →
STL-10 because the number of target samples in the task is
low (450 samples), which provides unreliable estimation of
the entropy for minimization.

Generator pretraining When we train all networks from
scratch, the noisy gradients at the beginning of the training
process hurt the training of the generator. Therefore, we
pretrain the generator before using it to generate training
samples for the classifier. When the main classifier is trained
with the pretrained generator, we keep finetuning the generator
with a small learning rate of 2 × 10−5. We find that the
pretrained generator strongly improves the performance of
the classifier, especially in the task MNIST → SVHN with
no instance normalization. Without a pretrained generator,
GADA only scores approximately 20% of accuracy in this
task. However, when we pretrain the generator, the accuracy
rises up to 72.3%, as presented in Table I.

C. Evaluation and Analysis

Overall comparison All the results on comparison with
other baselines are presented in Table I. To summarize, we
achieve state-of-the-art results across five tasks, MNIST ↔
SVHN, MNIST → MNIST-M, DIGITS → SVHN, and STL-



(a) VADA (acc: 70.6%) (b) GADA (acc: 83.6%) (c) VADA+DIRT-T (acc: 75.75%) (d) GADA+DIRT-T (acc: 90%)

Fig. 5: Feature space comparison between VADA [14] and GADA in MNIST → SVHN. Combining DIRT-T with GADA significantly
improves the performance, which shows that our GADA module could be efficiently used to boost other techniques.

10→ CIFAR-10 (with instance normalization). For the highly
challenging adaptation task of MNIST → SVHN, we gained
a significant improvement of approximately 21% accuracy
compared to the state-of-the-art algorithm CoDA [13] when no
instance normalization is applied. With instance normalization,
we achieved a considerable improvement of approximately
2% over CoDA. In the task CIFAR-10 → STL-10, GADA
outperformed VADA [14] but underperformed CoDA by a
small margin, because STL contains a very small number of
samples in the training set (50 images per class), which seems
to hurt the generator training process. For STL → CIFAR,
our performance is the best when instance normalization is
applied. However, without this preprocessing step, we out-
performed VADA [14] but lost to CoDA [13] by about 1%.
Also note that GADA*, a model trained with λs = λt = 0,
outperformed VADA [14] in almost all the scenarios, which
shows that our extra class module is more effective than the
loss functions Le and Lv used in VADA. More details are in
the below ablation study.
Generated images Generated images are shown in Figure 4
for MNIST → SVHN and SVHN → MNIST. We can see
that in both tasks, the digits in the generated images are
recognizable, but their shapes, styles or colors were changed.
This causes them to look different from the original training
images, or simply bad. This analysis empirically shows that
the distribution of the generated images is different from the
training data’s, while preserving meaningful features for the
network to learn from.
Feature space visualization In Figure 5, we compare
the t-SNE plots of the last hidden layer of VADA models
(Figures 5(a) and 5(c)), and GADA models (Figures 5(b)
and 5(d)). We observe that the feature space of GADA
is more organized with more separate clusters, compared to
those of VADA. GADA increases the distances among the
clusters, which follows our intuition in the beginning. This
results in a much higher accuracy (83.6% compared to 70.6%).
When integrated with DIRT-T [14], our performance becomes
boosted further from 83.6% to 90%. This experiment shows
the power of GADA when integrated with other methods,
which proves the generic characteristic of our module.
Ablation study We evaluate the contributions of the loss
functions in terms of accuracy on the adaptation task MNIST
→ SVHN in Table II. Instance normalization is applied to all

TABLE II: Accuracy (%) on test set of the task MNIST → SVHN
for ablation analysis. The numbers in brackets show the relative
improvement compared to DANN’s result.

Lc Ld Le Lv Lu,Lg MNIST → SVHN
DANN(ours) X X 66.3
DANN+Le X X X 68.1 (+1.8)
DANN+Lv X X X 69.9 (+3.6)

GADA* X X X 78.7 (+12.4)
VADA(ours) X X X X 70.6 (+4.3)

GADA X X X X X 83.6 (+17.3)

the cases for a fair comparison. Our results show that adding
one of the terms Le, Lv , or the extra class (Lu,Lg) into
DANN improves the performance in a stable manner. Among
the three, our proposed extra class method provide the highest
improvement, at 12.4% compared to 1.8% and 3.6%. We
merge both Le and Lv into DANN to have our implementation
of VADA [14] to achieve a higher improvement, but the
performance gain is still much less than that of GADA*. The
best result is achieved when we add the extra class into VADA
(last row), which creates an improvement of 13% over VADA
in terms of accuracy and surpasses the state-of-the-art result
in CoDA [13]. This ablation analysis shows that our module
could be integrated into other methods, such as DANN or
VADA, for higher performance.

Confusion matrix In Figure 6, we present a confusion
matrix that shows the prediction accuracy for each of the
nine different classes in the task STL-10 → CIFAR-10. We
observe that our model works very well with several classes,
such as automobile, ship, and truck, each of them achieves
accuracy of approximately 90%. The class that degrades our
performance the most is bird with only 51% of accuracy. Our
model misclassifies the bird images as cat, deer, and dog. We
suspect that it is because of the noisy learning in the beginning
of the training.

V. CONCLUSION

We proposed the Generative Adversarial Domain Adap-
tation (GADA) algorithm, which significantly improves the
discriminative feature extraction by injecting an extra class and
training with generated samples. The extra class along with the
loss functions increases the distances among the real target
clusters, thereby improving the discriminative quality of the
extracted features. Through extensive experiments on different



Fig. 6: Confusion matrix for STL-10 → CIFAR-10.

standard datasets, we showed the performance of our method,
which outperformed the other state-of-the-art algorithms in
many cases, especially on the highly challenging adaptation
task MNIST → SVHN. In addition, our module is shown to
be extremely effective when integrated into other methods.
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