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ABSTRACT

With increasing demands for mobile data traffic and efforts for a

better QoS, many base stations (BSs) consume a significant amount

of electrical power with a lot of electricity bill. Many practical

solutions include sharing BSs among mobile network operators

(MNOs), in which an MNO’s BS allows to serve traffic from nearby

users subscribing to other MNOs with being paid a certain roaming

fee. However, without assurance of gains, MNOs would not agree

to BS sharing. In this paper, we study pricing and user association

policies that assure actual gains to each MNO in the BS sharing.

We model this with a game that jointly involves the strategic de-

cision of roaming price and user association, where we consider

the flow-level dynamics of traffic. We assume a time-scale sepa-

ration where pricing decision is made at a slower time scale than

user association, as often done in practice. First, for a fixed roam-

ing price we analyze the user association game, where we prove

that (i) it is a potential game, (ii) there exists a unique pure Nash

equilibrium (NE), and (iii) a distributed algorithm inspired by an

approximate version of Jacobi play converges to the NE. Based on

this nice properties of the user association at a faster time scale,

we study the slower time-scale pricing decision game and prove

that there exists a pure NE with achieving almost the efficiency of

full-cooperation (without roaming fee). We demonstrate that there

exists a significant degree of energy saving, once an appropriate

competition rule is provided, through numerical simulations under

a variety of scenarios including those based on a real 3G deploy-

ment.

Categories and Subject Descriptors

C.2.0 [General]: Data communications; C.2.1 [Network Archi-

tecture and Design]: Wireless communication; C.2.3 [Network

Operations]: Network management
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1. INTRODUCTION
Demands for data service in cellular networks are highly increas-

ing, as predicted by Cisco [1], where mobile data traffic will reach

about 24 Exabytes per month by 2019. To cover increasing de-

mands for data traffic, each MNO improves spectral efficiency by

densely deploying small-cell BSs. However, densely-deployed BSs

naturally require high expense in power consumption. Multiple

MNOs in each country (three major MNOs in Korea, for example),

which experience high market competition, independently deploy

their network in most cases, and thus it is reported that there are

significantly redundant overlaps (but with different geographical

locations) in the coverage of BSs among multiple MNOs, as ex-

emplified in the BS deployment map provided by UK government-

sponsored website [2] (see Figure 1). A notion of BS sharing can

be considered as a candidate solution to significantly reduce the

power consumption while maintaining user-level QoS. As the name

implies, the key idea of BS sharing is to break the boundary of BS

ownership, allowing users to be served by nearby BSs, regardless

of their original subscription by paying a certain roaming fee. How-

ever, without an appropriate choice of roaming price and a rule of

associating users with suitable BSs, the effect of BS sharing would

not be maximized. High competition among existing MNOs re-

quires to study these under a strategic situation, where each MNO

selfishly determines its own roaming fee as well as user association

(i.e., which users would be serviced by which BSs).

Main contribution. In this paper, we study the policies of charging

roaming fee and associating users under a certain roaming agree-

ment, where each MNO strategically tries to minimize their oper-

ating expenditure (OPEX). The roaming pricing policy determines

how much each MNO charges “outside” users for their roamed traf-

fic, and the user association policy determines the actual amount of

roamed traffic, both of which depend on a few key factors, such

as the number and the location of BSs and subscribers in each

MNO. Clearly, these two policies jointly determine the payoff of an

MNO. For instance, the cheaper roaming fee of an MNO would in-

crease the amount of roamed traffic, where separately assigning the

roamed traffic to the BSs of other MNOs would differently deter-

mine its OPEX. The main contribution of this paper is summarized

as follows:

◦ Having pricing and user association in one game leads to a highly

challenging mathematical model, often losing tractability. More

importantly, as is usual in practice, users are often reluctant to

accept fast-changing prices. Thus, we take a time-separation ap-



Figure 1: Real 3G deployment map in London, UK (9 BSs of MNO m

and 13 BSs of MNO n in 2 x 1 [km2])

proach that those two strategic factors affect the system at dif-

ferent time scales. We assume that the pricing decision game

is played at a slower time scale than the user association game.

Another key modeling feature of this paper lies in our perspec-

tive of QoS, where we consider a flow-level performance (such

as file-transfer delay), as done in [3], that seems to provide more

realistic QoS measure to the users, compared to other typical ap-

proaches that are based on packet-level throughput.

◦ In the analysis of game, first, for a fixed roaming price vector of

MNOs, in the user association game we study how each MNO

splits the traffic of its subscribers across the entire BSs in the

network. The challenges lie in (a) the complex inter-play of

flow-level user performance and BS power consumptions, which

depend on the amount of roamed traffic from other MNOs as

well as (b) finding a distributed user association mechanism. We

first show that this game is a potential game, and thus the use-

ful features such as existence/uniqueness of NE are provably en-

sured. Next, we propose a low-complexity, distributed dynamic

update algorithm that provably converges to the NE, inspired by

an approximate version of Jacobi play. These nice properties of

the user association game in terms of equilibrium and dynamics

play a role of providing a good underlying module to the pricing

game.

◦ Using the underlying user association game running at a faster

time scale, we study the pricing decision game, where each MNO

strategically chooses its roaming price. We show the existence of

a pure NE using quasi-convexity of the payoff function, and we

also analyze various aspects of the NE through extensive simu-

lations. Based on our analysis of pricing decision and user asso-

ciation games, we draw useful engineering implications on how

MNOs decide on their roaming price and how much energy sav-

ing is achieved under BS sharing whose key factors are strate-

gically determined. Interesting messages include the one that

at equilibrium, the equilibrium almost achieves the efficiency of

full-cooperation under various environments (0.96-0.99), show-

ing much better efficiency than that in conventional non-BS shar-

ing cases (0.65-0.88).

Related work. The idea of BS sharing is conceptually suggested in

[4,5]. They proposed a BS sharing scheme that the remaining traffic

of some BSs is accepted by different operators as roaming traffic,

when some BSs are switched off. However, it is not guaranteed that

MNOs have sufficient incentive to perform BS sharing, since they

do not consider the economic gain under a roaming agreements be-

tween MNOs. There are several works to analyze economic incen-

tives of BS sharing under roaming agreements [6–11]. The authors

in [6] studied the possibility that a roaming agreement may lead to

a collusion between MNOs. In [7], the authors studied the trade-off

between BS sharing and investments for cellular network capacity

using the newsvendor model. In [8], the authors considered only

electrical bill and roaming fee in their proposed algorithm for BS

sharing irrespective of user QoS. In [9], the authors proposed a user

association algorithm in sharing BSs for uplink throughput maxi-

mization using the approach of Nash bargaining to share revenue

from the BS sharing. The authors in [10, 11] analyzed the eco-

nomic benefits from BS switching on/off with BS sharing. They

focus on the trade-off between throughput and energy saving in cel-

lular networks, where for simplicity it was assumed that multiple

MNOs have the identical BS deployment map. Such an assumption

makes the user association problem simple due to the coexistence

of BSs of other MNOs, resulting in a user association algorithm

that each BS always serves the other MNOs’ traffic when the BS

of other MNOs in the same location was switched off. However,

in real BS deployment, BSs are often located in a heterogeneous

manner, as shown in Fig. 1. User association schemes for a single

MNO are proposed in [3, 12–19] under different models and as-

sumptions, where most works consider the received signal strength

and the amount of traffics in BSs to select a serving BS without con-

sidering power consumption. The recent studies [3,17–20] consid-

ered flow-level performance in associating users in consideration of

power consumption, some of which motivates our user association

game in the context of multiple MNOs.

2. MODEL

2.1 System Model
Network and BS sharing service. We consider a wireless cellu-

lar network with a set M of multiple MNOs. For simplicity, we

use −m
.
= M \ {m}. Denote by Bm the set of BSs owned and

served by operator m, where we let the entire set of BSs be B, i.e.,

B =
⋃

m∈M Bm. We abuse the notation of m, where we use m(b)
to indicate the MNO that owns the BS b. We assume that the BS

ownership is exclusive and all users subscribe to only one MNO.

We consider the existence of BS sharing that any user can be as-

sociated with a BS regardless of her original subscription, as done

in [4–11]. However, when she is associated with and served by a

BS owned by other MNOs than her MNO, she or her MNO has to

pay a certain fee called roaming fee which we will discuss later.

We also assume that all BSs do not differentiate in service priority

between traffics from their subscribers and roamed traffics.

Traffic and capacity. We consider a region L ⊂ R2 that is covered

by the BSs of all MNOs. We assume that each flow in MNO m ar-

rive as a location-dependent inhomogeneous Poisson point process

with rate λm(x) at a location x ∈ L, and the file size of each arrival

is independently distributed with mean 1/µm(x). Thus, the traffic

intensity at location x for MNO m is γm(x)
.
= λm(x)

µm(x)
< ∞. We

consider that each user at a location x experiences the same data

rate cbx = cbx(Bm(b)) for a given BS b associating the user (i.e., the

same channel conditions at the same location). Note that the de-

pendence on Bm(b) is due to the interference among the BSs of an

MNO, but the capacity does not depend on the BSs of other MNOs,

since each MNO operates the network in a difference frequency

band. We further assume that the data rate is not changed over time,

i.e., we do not consider fast fading or dynamic inter-cell interfer-

ence, since the time scale of fast-fading and inter-cell interference

is much faster than the time scale of user association and pricing

decision. Hence the fast-fading and inter-cell interference are con-

sidered as Gausssian-like noise in user association [3, 13, 15, 17].

Loads. For a given BS b, we define system-load density of lo-

cation x to be ̺bm(x)
.
= γm(x)

cbx
, which denotes the fraction of



time required to deliver traffic intensity γm(x) from the BS b to

location x. We introduce the notion of association vector yb
m

.
=

(ybm(x) : x ∈ L), where for any given MNO m and a BS b,
ybm(x) ∈ [0, 1] corresponds to the fraction of time that the users

of MNO m at location x are associated with BS b, thus, we should

have
∑

b∈B y
b
m(x) = 1. For notational convenience later, for a

given BS b, we denote yb .
= (yb

m : m ∈ M), and also denote the

entire association y
.
= (yb : b ∈ B). For a given association vector

y, we are interested in the offered load imposed on a BS b of MNO

m, which we denote by ρbm = ρbm(y),1 because the offered load

affects the QoS, the consumed power, and the roaming fee, all of

which will be directly related to the aggregate utility of MNOs (see

Section 3), i.e.,

ρbm =

∫

L

̺bm(x) · ybm(x) dx. (1)

Note that if b is the BS that the MNO m does not own, (i.e., b ∈
B−m), ρbm is the load of the roamed traffic. Then, for a given y,
we can define the system load by MNOm by a vector ρm

.
= (ρbm :

b ∈ B),which corresponds to the collection of the loads across BSs

assigned by MNO m. Similarly, we denote per-BS aggregate load

(offered by all MNOs) by ρb =
∑

m∈M ρbm, and finally let ρ =

(ρb : b ∈ B). Then, the set F of feasible loads that corresponds to

the collection of loads achieved by all possible association vectors

under the stability of each BS, is given by:

F = {ρ | ρb(y) ≤ 1− ǫ, ∀b ∈ B,
∑

b∈B

ybm(x) = 1, ∀m ∈ M,∀x ∈ L,

ybm(x) ∈ [0, 1], ∀m ∈ M, ∀x ∈ L,∀b ∈ B},

where ǫ is an arbitrary small positive constant.

3. PROBLEM FORMULATION: GAME
We consider the case where MNOs are strategic and selfishly

maximize their revenue (or equivalently minimize their cost). To

that end, we formulate a game played by the MNOs, where their

strategies of an MNO, say m, are: first, ρm, how much traffic to

handle in which BSs (by controlling the association vector), and

second, km, the roaming price, i.e., the amount of money that m
charges for the roamed traffic from −m. Note that MNOs control

the association vectors y rather than ρ, but due to the relationship

between y and ρ in the previous section, we henceforth consider

ρ ∈ F as a strategy vector.

Formally, we model the payoff function of MNO m correspond-

ing to the cost function that should be minimized:

Um(ρm,ρ−m,km, k−m)
.
=

∑

b∈B

φα(ρ
b)

︸ ︷︷ ︸

(a)

+η
∑

b∈Bm

Eb(ρb)

︸ ︷︷ ︸

(b)

−
∑

b∈Bm

∑

n∈−m

η∆Eb(ρbn)− km
∑

b∈Bm

∑

n∈−m

gb(ρbn)

︸ ︷︷ ︸

(c)

+
∑

b∈B−m

η∆Eb(ρbm) +
∑

b∈B−m

km(b)g
b(ρbm)

︸ ︷︷ ︸

(d)

, (2)

1We henceforth omit the dependence of the load-related notations
on the association vector y for notational simplicity, unless explic-
itly needed.

where each function and parameter are explained shortly, and each

term is interpreted as: (a) is the cost of experienced QoS2, (b) is

the power operating cost of MNO m owns, (c) is the revenue from

serving other MNO’s roamed traffic, and (d) is the cost to pay for

MNO m’s roamed traffic to other MNOs.

(i) QoS cost φα(·): The function φα(·) represents the flow-level

QoS cost function (such as file-transfer delay), modeled by:

φα(ρ
b) =

{
(1−ρb)1−α

α−1
, if α 6= 1,

log( 1
1−ρb

), if α = 1,
(3)

where α ≥ 0 is a parameter that characterizes the incurred QoS

cost. The case α = 0 (often called rate-optimal) corresponds to

the cost measured by user rates, since φ0(ρ
b) becomes

∑
ρb, and

then, a user gives the work load to a BS who has maximum capac-

ity. When α = 2, the function represents that the summation of

the average number of users (similarly delay from Little’s formula)

across all BSs from the standard queueing theory. This function is

first used in [3].

(ii) BS power cost Eb(·): The function Eb(·) represents the amount

of power consumed in BS b, consisting of (i) offset power for turn-

ing on a BS and (ii) adaptive power that increases as the BS utiliza-

tion, modeled by: for each BS b,

Eb(ρb) = βbEbρb + (1− βb)Eb, (4)

where βb ∈ [0, 1] quantifies the portion of the load proportional

power consumption, and Eb is the maximum operational power

when fully utilized (i.e., ρb = 1). The case when βb = 0 means

that BS b is ideally energy-proportional, but typically, the range of

βb is roughly 0.5− 0.8 in real UMTS BS [21].

(iii) Roaming fee η∆Eb(·) and gb(·): The roaming fee consists of

two parts: (i) prime cost (η∆Eb(·)), and (ii) profit margin (gb(·)),
where

∆Eb(x)
.
= βbEbx, gb(x)

.
= η∆Eb(x) + x. (5)

The function ∆Eb(x) quantifies the amount of power consumption

increased by traffic load x in BS b, and the function gb(x) is, in

BS b, the sum of the traffic load x and the increased energy con-

sumption due to x. Note that ∆Eb(ρbn), when the MNO n’s traffic

is served at BS b, is due to the following algebra:

∆Eb(ρbn) = Eb(ρb)− Eb(ρb−n)

= βbEb
{ ∑

m∈M

ρbm −
∑

m∈−n

ρbm

}

= βbEbρbn. (6)

We assume that each MNO charges the other MNOs for the

prime cost of roaming, even if the MNO does not take a profit mar-

gin (i.e., km(b) = 0) due to rationality of the MNO. In the profit

margin, we consider that each MNO charges fee for roaming pro-

portional to the increment in service time (BS load) and BS power

consumption. Note that since the BS load is the utilization (busy-

time) of a BS by queueing theory, the increment in the BS load

by roaming can be interpreted as the service time of the roaming

traffic.

(iv) Parameter η and unit roaming price km: The parameter

η ≥ 0 trade offs QoS and power consumption cost, where larger

η implies that MNOs put more emphasis on the power cost in run-

ning their network. The bounded value km ∈ [0,K] for some K

2In this term, we take into account of all BSs, since under the BS
sharing in this paper each MNO potentially uses other MNOs’ BSs
and all BSs fairly serve all traffics irrespective of their original sub-
scription.



is referred to as unit roaming price that can be chosen by the MNO

m as a strategy.

Our approach: Time-scale decomposition. In this paper, we do

not directly analyze the game in (2), but decompose it into two

games, motivated by what happens in practice. Typically, traffic

arrival and departure process for a user varies much faster than the

overall traffic patterns in a BS, as reported by measurement-based

studies [5, 21], which can be considered as a constant during a cer-

tain period, e.g., an hour. In contrast, the flow-level dynamics due

to flow arrivals/departures are usually less than several minutes.

Also, it seems natural to assume that the time scales of price de-

cision and user associations are similar to those of traffic patterns

and flow-level dynamics, respectively. In fact, user association runs

at a fast time-scale in practice, e.g., amount 100 msec in LTE sys-

tems [22].

Inspired by this practice, we separately consider the following

two games: pricing decision game and user association game, where

the latter is played for a fixed pricing vector and the former is

played under the achieved equilibrium of the latter game played

faster. This time-scale separation not only reflects the practice well,

but also allows analytical tractability.

User association game. Assuming that (km : m ∈ M) is fixed,

each MNO m plays the game with its strategy ρm with the payoff

function,

UA-G: Um(ρ)
.
= Um(km, k−m,ρm,ρ−m). (7)

Pricing decision game. Each MNO m plays the game with its

strategy km, where each MNO assumes that if k = (km : m ∈
M) is played, its corresponding equilibrium (if it exists) is im-

mediately obtained as ρ∗
m(k),ρ∗

−m(k). Thus the payoff function

becomes:

PD-G: Um(km, k−m)
.
= Um(km, k−m,ρ

∗
m(k),ρ∗

−m(k)). (8)

4. USER ASSOCIATION GAME
In this section, we first analyze the user association game with

a fixed pricing vector. Our primary interests include the existence

and the uniqueness of the Nash equilibrium as well as the existence

of distributed user association algorithm that converges to the NE.

A distributed algorithm for the user association is important in prac-

tice, since a centralized user association (where BSs are seriously

involved) may required a significantly large amount of signaling

message exchanges.

4.1 Equilibrium Analysis
We first prove that the user association game is a potential game,

as stated in Theorem 4.1.

THEOREM 4.1. The user association game is an exact potential

game with the following potential function V (ρ):

V (ρ) =
∑

b∈B

{

φα(ρ
b) + ηEb(ρb) + km(b)

∑

n∈M,
n 6=m(b)

gb(ρbn)
}

. (9)

PROOF. By the definition of a potential game, it suffices to show

that the gradient of payoff function is equal to that of the potential

function. The gradient of payoff function for all m ∈ M is given

by:

∇ρmUm(ρ) =
(∂Um(y)

∂ρbm
: b ∈ B

)

. (10)

Under the fixed unit roaming price k, for all m ∈ M, we get:

∂V (ρ)

∂ρbm
=
∂Um(ρ)

∂ρbm
=







1

(1−ρb)α
+ ηβbEb, if b ∈ Bm

1

(1−ρb)α
+ ηβbEb(1 + km(b))

+km(b), if b ∈ B−m

Therefore, ∇ρmUm(ρ) = ∇ρmV (ρ),which completes the proof.

It is well-known by [23], using the property of a potential game,

an NE ρ∗ of the user association game should be the solution of the

following optimization problem:

ρ
∗ = argmin

ρ∈F
V (ρ), (11)

The fact that the user association game is a (exact) potential game

helps a lot with studying the existence and the uniqueness of NE,

as stated in Theorem 4.2.

THEOREM 4.2. UA-G has a pure NE, which is unique for all

α > 0. 3

PROOF. We will prove the following two: (i) the feasible load

set F is a non-empty, compact, and convex set, and (ii) the opti-

mization problem in (11), is a convex program, and the objective

function is strictly convex function for all α > 0.
First, (i) holds by Lemma 1 in [3]. Second, for (ii), we note that

the φα(ρ
b), and ηEb(ρb) are strictly convex function and linear

function, ∀ρb ∈ F and ∀α > 0, respectively. Further, the roaming

cost function gb(ρbm) is a linear function on ρbm,∀m ∈ M. There-

fore, the problem (11) is a convex optimization problem with the

strictly convex objective function by convex preserving operations.

From (i) and (ii) there exist a unique pure NE by [24, 25]. This

completes the proof.

4.2 Distributed User Association
In this subsection, we aim at developing a distributed user asso-

ciation algorithm that provably converges to the NE analyzed in the

previous section.

Algorithm. We first describe our association algorithm, which is

split into the parts by users and base stations, followed by its ratio-

nale in the context of the dynamics in game theory. Our algorithm

is inspired by an approximate version of Jacobi play [26], as dis-

cussed later.

DUA (Distributed User Association) Algorithm

User algorithm. At every iteration step t, each user receives the

followings through broadcast messages from its serving BS i4: (i)

the vector of unit roaming price k, (ii) the load of its serving BS i
denoted by ρi,t, and (iii) the load vector of the neighboring BSs of

BS i denoted by ρN (i),t, where N(i) is the set of the neighboring

BSs of BS i.
Then, each user associates with a BS that satisfies the following:

argmin
b∈{i}∪N (i)

1

cbx

{ 1

(1− ρb,t)α
+ ηβbEb(1 + k(b,m)) + k(b,m)

}

,

(12)

3For α = 0, the potential function becomes linear, in which case
only existence of NE is guaranteed.
4In LTE standards, there is a broadcast control channel (BCCH) in
downlink channel structure.



where k(b,m) represents the roaming price of the provider of b
when m is not the b’s owner and 0 otherwise, i.e.,

k(b,m) =

{
km(b), if m 6= m(b)
0, otherwise.

BS algorithm. After each user selects its association at iteration t,
each BS receives k and ρN (b),t+1 from its neighboring BSs, and

updates ρb,t+1 based on the users’ association decision. Then, each

BS advertises the unit roaming price k, ρN (b),t+1, and ρb,t to all

(associated) users, and send ρb,t to its neighboring BSs.

ρb,t+1 is updated as follows.

ρb,t+1 = ωtρb,t + (1− ωt)T (yb,t), (13)

where the ωt ∈ [0, 1) is an exponential moving average parameter,

and T (yb,t) is defined as:

T (yb,t)
.
= min

{∫

L

̺bm(x) · yb,tm (x)dx, 1− ǫ
}

, (14)

where the association yb,tm (x) is determined by the user at location

x as in (12). Note that each BS can easily compute T (yb,t) by

simply measuring its utilization.

Convergence. We shall prove the convergence of the DUA. In the

view of potential game, finding an NE of our game is equivalent to

solving an optimization problem in (11). Thus, we take the opti-

mization problem to prove the convergence of the DUA.

THEOREM 4.3. DUA converges to the unique NE of the user

association game in (7).

PROOF. In the proof, we will exploit the following two: (i) the

user algorithm (12) gives a descent direction on V (ρt) for ρt ∈ F ,
and ρt 6= ρ∗, where ρt = (ρb,t : b ∈ B), and (ii) for ρt ∈ F ,
there exist ωt ∈ [0, 1) such that V (ρt+1) < V (ρt). Here, we do

not describe the details of the proof (i) and (ii) due to shortage of

space. But the proof is done in the similar way to Lemma 3 and

Lemma 4 in [3], respectively. By the (ii), we can select the ωt that

makes the sequence of the DUA (i.e., ρt) monotonically decreasing

in t, and then, the sequence must converge to a fixed point by lower

bound of F .

Since there is no descent direction for all ρ ∈ F at the conver-

gence point by (i), the point is an optimal of the potential function

and is the unique NE of our game by (11).

We remark that our algorithms extend the ones for non-BS shar-

ing cases, e.g., [3, 17, 18]. In particular, our algorithm is similar

to those in [17, 18], with a slight difference that we additionally

consider unit roaming price and power consumption for the BSs of

other MNOs.

Rationale. It is well known that a better reply path converges to

the NE in potential games [23]. Thus, to find a dynamic algorithm

that converges the NE in UA-G, we first consider Jacobi play [26]

which is one of the algorithms that provide a better reply path by

taking exponential-weighted moving average of the best response.

However, Jacobi play is impractical in our case due to the hardness

of finding the best response, as discussed later. Thus, we take an

approximated Jacobi play that provably converges to the NE with

implementable hardness, and propose the DUA that practically im-

plements the approximated Jacobi play in cellular networks.

In order to explain the hardness of Jacobi play, we first describe

the Jacobi play as follows.

Jm(ρt)
.
=ωt

ρ
t
m + (1− ωt)Bm(ρt), (15)

where the Bm(ρt) is the best response described as follows.

Bm(ρt
−m)

.
= argmin

(ρm,ρt
−m

)∈F

Um(ρm,ρ
t
−m), (16)

where ρt
−m is the strategies of the others at iteration step t.

To calculate (15), the best response Bm(·) should be available,

but finding it turns out to be very complexity due to its complex

necessary condition, given by:

〈∇Bm(ρt
−m

)Um(Bm(ρt
−m),ρt

−m), (ρm −Bm(ρt
−m))〉 ≥ 0

(17)

The inner product in the necessary condition (17) can be computed

as follows.

〈∇Bm(ρt
−m

)Um(Bm(ρt
−m),ρt

−m), (ρm −Bm(ρt
−m))〉

=
∑

b∈B

{

ψb(ρb,B)(ρbm −Bb
m(ρt

−m))
}

=
∑

b∈B

{

ψb(ρb,B)

∫

L

̺bm(x)(ybm(x)− yb,Bm (x))dx
}

=

∫

L

∑

b∈B

{

̺bm(x)ψb(ρb,B)(ybm(x)− yb,Bm (x))
}

dx, (18)

where ρb,B = Bb
m(ρt

−m)+ρb,t−m, and theBb
m(ρt

−m) is the element

of Bm(ρt
−m) for BS b, i.e, Bm(ρt

−m) = ρb,t+1
m . For all b ∈ B,

ψb(ρb,B) is defined as:

ψb(ρb,B)
.
=

1

(1− ρb,B)α
+ ηβbEb(1 + k(b,m)) + k(b,m).

(19)

Then, the necessary condition (17) holds when the following

condition is satisfied.
∑

b∈B

̺bm(x)ψb(ρb,B)(ybm(x)− yb,Bm (x)) ≥ 0, ∀x ∈ L. (20)

In order to satisfy (20), in the best response, each MNO plays a

deterministic user association such that each user selects a BS with

probability 1 which satisfies the following condition:

argmin
b∈B

1

cbx

{ 1

(1− ρb,B)α
+ ηβbEb(1 + k(b,m)) + k(b,m)

}

.

(21)

The difficulty in the best response is caused by 1
1−ρb,B

in (21).

Finding the user association that satisfies (21) is a fixed point prob-

lem due to the definition of ρb,B , requiring an exhaustive search.

However, since the user association can vary within tens of mil-

liseconds, the best response is not implementable. So, we con-

sider an approximate version of best response such as the user al-

gorithm (12) motivated by Jacobi play. The key idea in the user

algorithm is that if ρb,B is given, then the best response (21) is eas-

ily solvable. So, we approximate ρb,B to the value at the previous

iteration step t (i.e., ρb,t), in the user algorithm (12).

5. PRICING DECISION GAME
In the previous section, we assume a fixed pricing vector, and

then study the game of how to distribute the loads (via user asso-

ciation) of a MNO to other MNOs. In this section, we study how

strategically MNOs decide on their pricing vectors, i.e., k. Recall

that when a strategy vector k is played, our time scale separation as-

sumption gives us the loads at NE, ρ∗(k), (from the corresponding

association game), which in turn is included in the payoff function



0 5 10 15 20
2.15

2.2

2.25

2.3

2.35

2.4

k
m

P
a

y
o

ff
 o

f 
M

N
O

 m
k

−m
=0

k
−m

=0.4

k
−m

=1

k
−m

=2

k
−m

=5

k
−m

=10

k
−m

=20

(a) Case A in the toy example

0 5 10 15 20
2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75

k
m

P
a

y
o

ff
 o

f 
M

N
O

 m

k
−m

=0

k
−m

=0.4

k
−m

=1

k
−m

=2

k
−m

=5

k
−m

=10

k
−m

=20

(b) Case B in the toy example

0 5 10 15 20
26

26.5

27

27.5

28

28.5

29

29.5

k
m

P
a

y
o

ff
 o

f 
M

N
O

 m

k
−m

=0

k
−m

=0.4

k
−m

=1

k
−m

=2

k
−m

=5

k
−m

=10

k
−m

=20

(c) Real deployments with symmetric traf-

fic conditions
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Figure 2: 2 MNOs. we plot the payoff function of MNO m for various values of MNO −m’s prices.

of the pricing decision game (PD-G), as seen in (8). This non-

trivial mapping from k to ρ∗(k) makes the analytical study highly

challenging, for which we rely on numerical analysis.

5.1 Equilibrium Analysis
Quasi-convexity of payoff functions. We first numerically show

that the payoff function is a quasi-convex function, and under such

a conjecture, we prove the existence of pure NE as stated in Theo-

rem 5.1. Figure 2 (The setup details will be explained in Section 6)

plots the shape of the payoff function in (8) for varying km for

a variety of k−m values, where we assume two MNOs. As we

see, although in numerical simulations, the payoff function seems

quasi-convex. Formally proving its quasi-convexity for a general

number of MNOs is left as a future work. Instead, we provide an

intuitional explanation for quasi-convexity next.

The intuition behind quasi-convexity is similar to the law of sup-

ply and demand in microeconomics. Suppose that km = 0, then

since the MNO m does not charge the roaming fee to roamed traf-

fic, the roamed traffic will grow up, in which case MNO m’s QoS

cost would also increase, resulting in the increase of them’s payoff

(recall that our payoff function is a cost function). In contrast, when

km is large, there will be almost no roamed traffic, where no gain

from roaming is obtained, and thus a large payoff. Note that the

economic roaming gain comes from x× y, where x is the roaming

fee and y is the amount of roamed traffic. However, whenever (i)

we slightly increase the roaming fee from a very small one, or (ii)

we slightly decrease it from a very large one, the larger benefit can

be achieved, either x increases in (i) or y increases in (ii).

The following theorem states the existence of a pure NE.

THEOREM 5.1. Under the assumption of quasi-convexity of the

payoff function in (8), PD-G has a pure NE.

PROOF. Each km ∈ [0, K] for allm ∈ M is closed and bounded,

and is obviously convex set. Um(km, k−m) is continuous in k−m,
and quasi-convex in km from the hypothesis. Thus, PD-G has a

pure NE by Theorem 1.2 in [27].

5.2 Efficiency of Strategic BS Sharing
To investigate the efficiency of BS sharing where MNOs strate-

gically behave, we define a measure that compares it to the case

when the MNOs are fully cooperative (i.e., km = 0, ∀m ∈ M).

In full-cooperation, it seems natural that the entire collection of

MNOs would assign the loads so that it maximizes the total aggre-

gate happiness of the MNOs, i.e., minρ∈FVG(ρ), where

VG(ρ)
.
=

∑

b∈B

{

φα(ρ
b) + ηEb(ρb)

}

. (22)

This measure is chosen based on the following: From the perspec-

tive of MNOs that are fully cooperative, users can fairly use all

BSs, irrespective of the ownership of the BSs. Therefore, an ideal

operation of cooperative MNOs would be the one that assumes that

a virtual MNO owns the entire BSs.

Then, the efficiency of sharing BSs for strategic MNOs is mea-

sured by the following ratio:

minρ∈F VG(ρ)

VG(ρ∗(k∗))
, (23)

where the ρ∗(k∗) is the NE of the user association game when the

NE k∗ of the pricing decision game is applied.

6. NUMERICAL ANALYSIS
In this section, we show the various aspects of the NE through

extensive simulations. In all simulations, we consider a duopoly

market, in which 2 MNOs denoted by m and n share their BSs

with each other in the real 3G deployment as in Figure 1. In the

payoff function, we use η = 10−5 for all simulations. In the power

consumption model, we consider that each macro and micro BS

has Eb = 865 W and Eb = 38 W, respectively, and βb = 0.5, as

in [28]. We assume that all users are uniformly distributed in the

rectangular domain. For all points x ∈ L, we assume that a file

request has exactly one file whose size is log normally distributed

with mean 1/µ(x) = 100 kbytes, and the mean arrival rate of

file transfer is λm(x) = 1.859 × 10−4, excluding the asymmetric

traffic conditions. We apply an urban cell path loss model 35.2 +
35log(d) + 26log(f/2) in IEEE 802.16m in [29], where d is the

distance between the user and the BS, and fm = 2.154 GHz, and

fn = 2.141 GHz5 are the center carrier frequencies of MNOm and

n, respectively. We assume that each MNO has 10 MHz bandwidth

for the downlink. We apply interference only on the BSs of the

same MNO.

BS coverage. We first show that our user association algorithm

(DUA) appropriately determines the coverage of BSs with min-

imizing QoS cost, BS power consumption, and roaming fee un-

der various pricing schemes. In simulations, we consider that 3-

pair of unit roaming price (km, kn) such as (0, 0), (1.06, 1.28)6,

and (200, 200), which represent full-cooperation, NE, and non-BS

sharing scenario, respectively.

Figure 3 shows that each MNO tends to become more conser-

vative on roaming as the unit roaming price of the other MNO in-

creases. Note that in Figure 3, the BSs of MNO m, and n are de-

noted by white rectangle and black triangle, respectively, and if the

BS is a micro BS, then we mark ‘micro’ nearby the BS. The others

are macro BSs. The shaded region represents the coverage by the

5The frequency 2.154 GHz and 2.141 GHz are the center frequen-
cies of two major MNOs in UK, respectively.
6Here, the pair (1.06,1.28) is a NE of the pricing decision game
from our numerical computation.
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Figure 3: BS coverage for various roaming prices

BSs of other MNO (i.e., the roaming region) in Figure 3. Specif-

ically, in the full-cooperation, the BSs of MNO m and n fairly

serve all traffic as shown in Figures 3(a), 3(d). As k increases, each

MNO avoids roaming its traffic due to expensive roaming fee, and

finally the user association game reaches to non-BS sharing (see

Figures 3(c), 3(f)) for sufficiently large k. Interestingly, BS shar-

ing gives a chance for users to be associated with a BS which gives

low-interference. Since high-interference gives low-data rate for a

user and it turns out to increase the QoS cost (3) (delay) of serving

BS, the user may tend to be associated with a BS that gives low-

interference among the BSs of different MNOs by DUA. As shown

in Figures 3(a), 3(b), 3(d), 3(e), each MNO aggressively uses the

BSs of the other MNO in the region where the BSs of the MNO are

closely located to each other (i.e., in heavy interference region).

Unit roaming price. We next study the impact of the number of

BSs and the number of subscribers in each MNO on the NE. To

that end, we consider three toy examples with different traffic and

infrastructure conditions as described in what follows:

• Case A: Both MNOs have exactly one BS each, and the

traffic conditions are same. The BSs are located at (0, 0)
and (2, 2) in 2 km by 2 km rectangular area, respectively.

The subscribers uniformly generate the traffic with λm(x) =
λn(x) = 1.46 × 10−7.

• Case B: The BS environment is as same as in case A, but

the traffic conditions are different, i.e., λm(x) = 2λn(x) =
2.92 × 10−7. Here, the difference in the generated traffic

means that the difference in the number of subscribers with

an assumption that each subscriber uniformly generates the

traffic.

• Case C: The traffic conditions of each MNO are the same,

but the BS deployment is heterogeneous. MNO m has addi-

tional BS in (0, 2), and λm(x) = λn(x) = 1.46 × 10−7.

For all simulations, we take the best response dynamic to find

the NE of the pricing decision game (PD-G), thus the convergence

point is exactly an NE by definition of NE.

In case A, each MNO has the same unit roaming price at NE

as shown in Figure 4(a) due to the symmetric conditions on traffic

and the number of BS. However, in case B, the difference in traf-
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Figure 4: Equilibrium roaming prices for various cases

fic increases the roaming price of MNO n who has less traffic than

the others as shown in Figure 4(b). Since the MNO n has fewer

subscribers than MNO m, the BS of MNO n has lower load than
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Figure 5: Efficiency of strategic BS sharing

the BS of MNO n, thus, the unit roaming price of MNO n as well

as the demands for roaming to MNO n grow. In case C, the unit

roaming price of MNO m is twice higher than that in case A as

shown in Figure 4(c). The added BS of MNO m gives better chan-

nel conditions to the users who are near the BS, and then, not only

the BS load of MNO m is reduced, but also demands for roaming

of MNO n increase, resulting in the increase of the unit roaming

price of MNO m. We perform simulations in real 3G deployment

and get similar results as toy examples. Like in the toy examples,

we conduct simulations in two different environments, symmetric

and asymmetric traffic conditions. For the symmetric traffic condi-

tions, the NE is (1.06, 1.28) due to the difference in the number of

BSs as shown in Figure 4(d). In Figure 4(e), we consider asymmet-

ric traffic conditions and give more subscribers to MNO m such as

λm(x) = 2λn(x), and then, k∗n is increased due to the increasing

demands for roaming to MNO n.

Efficiency. Figure 5 shows the performance of our game in terms of

efficiency (23) and the payoff of each MNO in real 3G deployment.

As shown in Figure 5(a), the NE achieves almost the efficiency

of full-cooperation for all cases consistently. However, conven-

tional non-BS sharing gives the lowest efficiency for all cases and

the efficiency is getting worse in the asymmetric traffic conditions.

Moreover, the NE gives the better payoff than non-BS sharing. As

shown in Figure 5(b), the payoff of NE is dramatically reduced

and it is about 65-89% of the payoff in non-BS sharing scenario.

Especially, in the asymmetric traffic conditions, the MNO n gets

the smallest payoff at NE due to the better roaming income than

full-cooperation. Thus, the rationality of each MNO is guaranteed

in the BS sharing, since the BS sharing always gives the smaller

payoff to all MNOs.

7. CONCLUSIONS
In this paper, we studied the impact of sharing BSs by formu-

lating two forms of games, where one is the pricing decision game

and the other is user association game, each of which is assumed

to played at different time scales. We demonstrate that there exists

a significant degree of energy saving, once an appropriate compe-

tition rule is provided, where more rigorous analysis of the pricing

decision game is left as a future work.
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